
Message Passing
Workloads in KVM

David Matlack, dmatlack@google.com

1

mailto:dmatlack@google.com

Message Passing Workloads

Loopback TCP_RR

IPI and HLT
DISCLAIMER: x86 and Intel VT-x

Halt Polling

Interrupts and questions are welcome!

Overview

2

● Usually, anything that frequently switches between running and idle.
● Event-driven workloads

○ Memcache
○ LAMP servers
○ Redis

● Multithreaded workloads using low latency wait/signal primitives for
coordination.

○ Windows Event Objects
○ pthread_cond_wait / pthread_cond_signal

● Inter-process communication
○ TCP_RR (benchmark)

Message Passing Workloads

3

Intuition: Workloads which don't involve IO virtualization should run at near
native performance.

Reality: Message Passing Workloads may not involve any IO but will still
perform nX worse than native.
● (loopback) Memcache: 2x higher latency.
● Windows Event Objects: 3-4x higher latency.

Message Passing Workloads

4

Message Passing Workloads

2. Receive 1 byte from
client. Send 1 byte back.

1. Send 1 byte
to server.

3. Receive 1 byte
from server.

● Microbenchmark: Loopback TCP_RR
○ Client and Server ping-pong 1-byte of data over an established TCP connection.
○ Loopback: No networking devices (real or virtual) involved.
○ Performance: Latency of each transaction.

● One transaction:

(idle)

(idle) (idle)

Client

Server

5

Loopback TCP_RR Performance

6

Host:
IvyBridge
3.11 Kernel

Guest:
Debian Wheezy Backports
(3.16 Kernel)

3x higher latency
25 us slower

● Message Passing on 1 CPU
○ Context Switch

● Message Passing on >1 CPU
○ Interprocessor-Interrupts

● What's going on under the hood?
● VMEXITs are a good place to start looking.
● KVM has built-in VMEXIT counters and timers.

○ perf-kvm(1)

Virtual Overheads of TCP_RR

7

Virtual Overheads of TCP_RR
Total Number of VMEXITs VMEXITs / Transaction

1 VCPU 2 VCPU 1 VCPU 2 VCPU
EXTERNAL_INTERRUPT 16705 12371 0.02 0.07
MSR_WRITE 2599 1704334 0.00 9.58
IO_INSTRUCTION 1786 762 0.00 0.00
EOI_INDUCED 613 25 0.00 0.00
EXCEPTION_NMI 289 31 0.00 0.00
CPUID 252 112 0.00 0.00
CR_ACCESS 171 272 0.00 0.00
HLT 34 354393 0.00 1.99
EPT_VIOLATION 2 0 0.00 0.00
PAUSE_INSTRUCTION 0 2014 0.00 0.01

● 2 HLT per Transaction
● 10 MSR_WRITE per Transaction

8

HLTs of TCP_RR
● 2 HLT

○ CPU instruction.
○ Stop executing instructions on this CPU until an interrupt arrives.

● VCPU wishes to stop executing instructions.
○ Guest OS has decided that there is nothing to do.
○ Nothing to do == idle.

● Message passing workloads switch between running and idle...

9

● 10 MSR_WRITE
○ "Write to Model Specific Register" instruction executed in the guest.

● 8 APIC Timer "Initial Count" Register (MSR 838)
○ Written to start a per-CPU timer.
○ "Start counting down and fire an interrupt when you get to zero."
○ Artifact of NOHZ guest kernel.

● 2 APIC Interrupt Command Register (MSR 830)
○ Used to send interprocessor-interrupts (IPI).
○ Used to deliver "messages" between client/server processes running on separate CPUs.

MSR_WRITEs of TCP_RR

10

VMEXITs of TCP_RR

VMEXITS

APIC Timer Register

APIC Interrupt Command Register (IPI)

HLT

client clientidle

serveridle idle

1. Send 1 byte to server.
Wait for response.

2. Receive 1 byte from
client. Send 1 byte back.

3. Receive 1 byte
from server.

VCPU 0

VCPU 1

11

HLT

HLTHLT

IPI

IPI

APIC TIMER

APIC TIMER APIC TIMER

APIC TIMER

VMEXITs of TCP_RR

VMEXITS

APIC Timer Register

APIC Interrupt Command Register (IPI)

HLT

client clientidle

serveridle idle

1. Send 1 byte to server.
Wait for response.

2. Receive 1 byte from
client. Send 1 byte back.

3. Receive 1 byte
from server.

VCPU 0

VCPU 1

12

HLT

HLTHLT

IPI

IPI

APIC TIMER

APIC TIMER APIC TIMER

APIC TIMER

Critical Path

● 8 per transaction
○ 4 on the critical path

● NOHZ (tickless guest kernel)
○ "Disable" scheduler-tick upon entering idle.
○ "Enable" scheduler-tick upon leaving idle.
○ scheduler-tick == APIC Timer (could also be TSC Deadline Timer)

● Why 2 writes per transition into/out of idle?
○ hrtimer_cancel

○ hrtimer_start

● Adds 3-5 us to round-trip latency.

APIC Timer "Initial Count" Register

13

● HLT:
○ x86 Instruction.
○ CPU stops executing instructions until an interrupt arrives.
○ This part of HLT is not on the critical path!

● How it works in KVM
○ Place VCPU thread on a wait queue.
○ Yield the CPU to another thread.

HLT

kvm_vcpu_block
 -> schedule()

VMEXIT

HLT

context switch to another
user task, kernel thread, or
idle

VCPU (guest)

PCPU (KVM)

14

kvm_sched_out

● Sending an IPI to wake up a HLT-ed CPU.
○ On the critical path!

IPI+HLT

WRMSR: APIC Interrupt
Command Register

kvm_vcpu_kick

return from
schedule() in
kvm_vcpu_block()

vmx_vcpu_run

IPI ISR

VMEXIT

VMRESUME

VCPU 1

VCPU 0 (HLT-ed)

guest

host

kvm_sched_in

* VMEXIT and VMRESUME
implemented in Hardware.

time

15

● Sending an IPI to wake up a HLT-ed CPU.
○ On the critical path!

● Same operation on bare metal is entirely implemented in hardware.
● How much overhead from virtualization?

○ Unlike APIC_TMICT, can't just time VMEXITs.

● We can compare with the same operation on physical hardware.

IPI+HLT

16

KVM versus Hardware
Ring 0 Microbenchmark (kvm-unit-tests)

1. VCPU 0: HLT.
2. ~100 us delay
3. VCPU 1: A = RDTSC
4. VCPU 1: Send IPI to [V]CPU 0.
5. VCPU 0: B = RDTSC (first instruction of IPI ISR).
6. Latency = B - A
7. Repeat.

Run in KVM guest and on bare-metal. Compare!

17

VMRESUME

WRMSR

kvm_vcpu_kick

return from
schedule() in
kvm_vcpu_block()

vmx_vcpu_run

IPI ISR

VMEXIT
VCPU 1

VCPU 0 (HLT-ed)

guest

host

kvm_sched_in

time

KVM versus Hardware

A = RDTSC B = RDTSC

18

● Median: KVM is 12x slower
● Pathological case (witnessed): KVM is 400x slower
● Best case (witnessed): KVM is 11x slower
● KVM: 5.7 us; Hardware: 0.5 us

KVM versus Hardware

Cycles
KVM Hardware

Min 13700 1200
Average 15800 1200

50%ile 14900 1200
90%ile 16000 1300
99%ile 24900 1300

Max 521000 1400

Host:
SandyBridge @ 2.6 GHz
3.11 Kernel

KVM performance is similar on IvyBridge
(5.6 us) and Haswell (4.9 us).

19

Notes about this benchmark:
● No guest FPU to save/restore.
● Host otherwise idle (VCPU context switches to idle on HLT).
● Host power management not the culprit.

KVM versus Hardware

20

KVM HLT Internals
● So KVM is slow at delivering IPIs and/or coming out of HLT.
● But why?
● Possible culprits:

WRMSR

vmx_vcpu_run

IPI ISR

VMEXIT

VMRESUME

VCPU 1

VCPU 0 (HLT-ed)

kvm_sched_in

time

return from
schedule() in
kvm_vcpu_block()

kvm_vcpu_kick

21

VMRESUME

vmx_vcpu_run

kvm_vcpu_kick

KVM HLT Internals
● So KVM is slow at delivering IPIs and/or coming out of HLT.
● But why?
● Possible culprits:

WRMSR

IPI ISR

VMEXIT
VCPU 1

VCPU 0 (HLT-ed)

kvm_sched_in

time

return from
schedule() in
kvm_vcpu_block()

22

RDTSC RDTSC RDTSC RDTSC RDTSC

KVM HLT Internals

WRMSR

kvm_vcpu_kick

return from
schedule() in
kvm_vcpu_block()

vmx_vcpu_run

IPI ISR

VMEXIT

VMRESUME

Min (cycles): 400 600 7300 3200 1300

VCPU 1

VCPU 0

guest

host

VT-x
KVM

Scheduler

kvm_sched_in: 492

400 1200 8500 3400 1400Median (cycles):

23

● Unsurprisingly, the scheduler takes some time to run the VCPU
○ Slow even in the uncontended, cache-hot, case.
○ Imagine if the VCPU is contending for CPU time with other threads.

● Experiment: Don't schedule on HLT.
○ Just poll for the IPI in kvm_vcpu_block.

KVM HLT Internals

24

● What happens when you don't schedule on HLT?

● KVM (Always schedule) 5.7 us
● KVM (Never schedule) 1.7 us
● Hardware (SandyBridge) 0.5 us

Never schedule!

Cycles
KVM (Always schedule) KVM (Never schedule) Hardware

Min 13800 4000 1200
Average 15800 4400 1200

50%ile 14900 4300 1200
90%ile 16000 4500 1300
99%ile 24900 6900 1300

Max 521000 50000 1400

25

Similar improvements on
IvyBridge (5.6 us -> 1.6 us)
Haswell (4.9 us -> 1.5 us).

Never schedule!

WRMSR

kvm_vcpu_kick

return from
schedule() in
kvm_vcpu_block()

vmx_vcpu_run

IPI ISR

VMEXIT

VMRESUME

Always schedule: 400 1200 8500 3400 1400

VCPU 1

VCPU 0

guest

host

VT-x
KVM

Scheduler
Never schedule: 300 1300 1100400 1200

(median cycles)
26

Never schedule!
● We eliminate almost all of the latency overhead by not scheduling on HLT.
● Scheduling is often the right thing to do.

○ Let other threads run or save host CPU power.

● Most of the time improves guest performance (let the IO threads run!).
● Can hurt performance.

○ See microbenchmark. See TCP_RR.

27

Halt-Polling
Step 1: Poll

○ For up to X nanoseconds:
■ If a task is waiting to run on our CPU, go to Step 2.
■ Check if a guest interrupt arrived. If so, we are done.
■ Repeat.

Step 2: schedule()
○ Schedule out until it's time to come out of HLT.

Pros:
● Works on short HLTs (< X ns)
● VCPUs continue to not block the progress of other threads.

Cons:
● Increases CPU usage (~1% for idle VCPUs if X=200,000 ns)

○ Does not appear to negatively affect turbo of active cores.
28

Halt-Polling
● Memcache: 1.5x latency improvement
● Windows Event Objects: 2x latency improvement
● Reduce message passing latency by 10-15 us (including network latency).

29

Halt-Polling
● Merged into the 4.0 kernel

○ [PATCH] kvm: add halt_poll_ns module parameter
■ Thanks to Paolo Bonzini

○ Use the KVM module parameter halt_poll_ns to control how long to poll on each HLT.

● Future improvements:
○ Automatic poll toggling (remove idle CPU overhead by turning polling off).
○ Automatic halt_poll_ns

■ KVM will set (and vary) halt_poll_ns dynamically.
■ How to do this is an open question... ideas?

○ Lazy Context Switching
■ Equivalent feature, but available for any kernel component to use.

30

Conclusion
● Message Passing

○ Even loopback message passing requires virtualization.
○ Being idle (as a Linux guest) requires virtualization.
○ Cross-CPU communication requires virtualization.

● Halt-Polling saves 10-15 us on message passing round-trip latency.
● Remaining round-trip latency:

○ 4 MSR writes to the APIC timer (3-5 us)
○ IPI send (~2 us)
○ HLT wakeup (even with halt-polling, still adds ~3 us!)

31

