Jens Freimann

19/08/2015

Pushing the limits: 1000 guests per host and beyond

Jens Freimann

19/08/2015

Pushing the limits: 1000 guests per host and beyond

(*Q*)*Emus predominately travel in pairs, and while they can form large flocks, this is an atypical social behaviour that arises from the common need to move towards a new food source. - Wikipedia*

Agenda

What is this about?

The test setup

What we tested

Challenges

Conclusion

What is this about?

KVM runs on...

What is this about?

- Finding limits of our machine/architecture and KVM/QEMU/Libvirt
- How far can we go given a sufficient host configuration and where does it break?
 - How many guests?
 - How many block and network devices?
 - Which resources are necessary?
 - Wh configuration settings are needed to support large configurations?
- Testing the extreme limits, not necessarily recommended to run in production
- No performance measurements

Agenda

What is this about?

The test setup

What we tested

Challenges

Conclusion

Test setup

IBM

Host:

System Type:	z13 (Type: 2964 Model 701 NE1)
Central Storage:	2 TB

CPUs:

64 (shared)

Guests:

RHEL 7.1 & SuSE 12

Memory:1024 MBCPUs:2Disk:Raw image files on SCSI disksNetwork:Linux bridged

Test setup

~# cat /proc/	/cpuinfo
---------------	----------

vendor_id : IBM/S390

processors : 64

bogomips per cpu: 20325.00

- cache0 : level=1 type=Data scope=Private size=128K line_size=256 associativity=8
- cache1 : level=1 type=Instruction scope=Private size=96K line_size=256 associativity=6
- cache2 : level=2 type=Data scope=Private size=2048K line_size=256 associativity=8
- cache3 : level=2 type=Instruction scope=Private size=2048K line_size=256 associativity=8
- cache4 : level=3 type=Unified scope=Shared size=65536K line_size=256 associativity=16
- cache5 : level=4 type=Unified scope=Shared size=491520K line_size=256 associativity=30
- processor 0: version = 00, identification = 11C667, machine = 2964
- processor 1: version = 00, identification = 11C667, machine = 2964
- processor 2: version = 00, identification = 11C667, machine = 2964

•••

processor 63: version = 00, identification = 11C667, machine = 2964

Agenda

What is this about?

The test setup

What we tested

Challenges

Conclusion

What we tested

Start 4096 guests

• ...

- Assign 4096 virtio-block devices to a guest
- Use 16384 virtio-block devices per host
- Assign 1024 virtio-net devices to a guest
- Assign large amount of ressources to the host, e.g. use more than 8TB RAM for the host
- Concurrent live guest migrations of > 64 guests

Agenda

What is this about?

The test setup

What we tested

Challenges

Conclusion

General: memory dumps can take very long

- Amount of memory in servers has increased faster than bandwidth of memory and storage
- On s390 we have the possibility to take memory dumps even in very early or late stages
- Not kdump but IBM stand-alone dump tools
- Downside: no filtering of memory and only 1 CPU available
- Writing a memory dump of a multi-TB system can take days
- For kvm **guests** with huge memory sizes guest debugging with gdb is a workaround

Host: adding network devices

2048 macvtap devices:

- found problem in s390 geth driver code
- Each macvtap device is assigned its own MAC address
- List of MAC addresses in hardware needs to be re-populated every time we add a macvtap device
- Causes long delays (76.5 seconds for 50 devices) and eventually leads to stalls
- Working on fix for qeth driver
- System limits hit:
 - Linux bridges limited to **1024 ports** \rightarrow add more bridges
 - Max. number of IPv6 routes

IPv6: Maximum number of routes reached, consider increasing route/max

→ Set ipv6.sysctl.ip6_rt_max_size = 8192

Attaching 4096 disks to the host

- System limits hit:
 - Max. number of inotify watches systemd-udevd: *inotify_add_watch*(7, /dev/dm-1784, 10) failed: *No space left on device* → set fs.inotify.max_user_watches=<some big number>
 - Number of file descriptors
 - ...

Counting file descriptors...

- Mostly eventfds, one per virtqueue
- For example: a virtio-net device is using
 - one virtqueue for TX/RX (depending on multiqueue or not)
 - one virtqueue for CTRL
 - /dev/tap
 - /dev/vhost-net + 3 irqfds
 - 8 FDs in total
- Add 1000 virtio-net devices
- We need many!

Use many virtio-block devices

Attach 4096 disks to a guest - What could possibly go wrong, right?

- Tested this a while ago, but limit was 1024 due to select()
- Change from select() to poll() between QEMU 1.4 1.5
- Target: 4096, started with: 1000
- Guest startup time with 1000 disks attached: 13 minutes
- Problem: Calling bdrv_drain_all() in each virtio_reset() call for every BlockDriverState
- Fix: Call aio_poll() per AioContext instead, save many aio_poll()'s
 - \rightarrow down to 16 seconds for 1000 disks
- Upstream commit:

commit f406c03c093f1451ac0ba7fde31eeb78e5e5e417 Author: Alexander Yarygin <yarygin@linux.vnet.ibm.com> Date: Wed Jun 10 14:38:17 2015 +0300

block: Let bdrv_drain_all() to call aio_poll() for each AioContext

4096 disks is possible with this fix

Using 16384 virtio-block disks

Started 16 guests, each assigned 1024 virtio-block devices

qemu-system-s390x: -drive file=/guestimages/data3/mydomain.img,if=none,id=drive-virtiodisk0,format=raw,serial=skel,cache=none,aio=native: could not open disk image /guestimages/data3/zs93k1g08166.img: **Could not refresh total sector count: Bad file descriptor**

- Discovered that /proc/sys/fs/aio-nr is the same as /proc/sys/fs/aio-max-nr
- Not enough aio contexts available
- Fix by increasing fs.aio-max-nr

Starting 4096 guests ... because it's such a nice even number

Starting 4096 guests ... because it's such a nice even number

Many system limits had to be tweaked:

journal: Failed to find user record for uid '107': Too many open files → create file /etc/system/libvirtd.service.d/openfiles.conf and add LimitNOFILE=4096 Number of file descriptors (of course!)

Increase max PTYs journal: internal error: process exited while connecting to monitor: 2015-04-04T15:41:07.159443Z qemu-system-s390x: -chardev pty,id=charconsole0: **Failed to create chardev** sysctl.conf: kernel.pty_max = 8192

Max processes/threads exceeded

- pthread_create_returns -EAGAIN \rightarrow insufficient resources
- LimitNPROC=1048576 in libvirtd.service
- In qemu.conf max_process=8192

Not enough memory → increase to 2TB kernel: [sched_delayed] sched: RT throttling activated followed by multiple page allocation failures. kernel: top: **page allocation failure**: order:4, mode:0x1040d0

Starting 4096 guests systemd says hello :)

- On systems with systemd installed there is a static service called systemd-machined
- Libvirt calls systemd-machine::CreateMachine() for every guest started
- Message handling in older versions (at least until v208) of systemd was inefficient

CreateMachine: Did not receive a reply. Possible causes include: the remote application did not send a reply, the message bus security policy blocked the reply, the reply timeout expired, or the network connection was broken.

- CreateMachine() timed out because of buggy message handling in systemd
- Fixed with systemd-219 by rewriting message loop

Starting 4096 guests Guests running

top - 11:03:47 up 1 day, 59 min, 4 users, load average: 133.44, 400.06, 312.86 Tasks: 8569 total, 24 running, 8545 sleeping, 0 stopped, 0 zombie %Cpu(s): 60.7 us, 9.8 sy, 0.0 ni, 19.2 id, 0.0 wa, 0.7 hi, 7.0 si, 2.6 st KiB Mem: 21102485+total, 14060241+used, 70422444+free, 418040 buffers										
KiB Swap: 10240			-	-					24296 cac	ned Mem
scroll coordi	nates	:у	= 1/8569) (tasks),	, x =	1/	'12 (fi	lelds)		
PID USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
39910 qemu	20	Θ	1788656	490400	8028	S	135.5	0.0	9:33.44	qemu-system-s39
39732 gemu	20	0	1739188	509052	8032	S	131.7	0.0	9:55.96	qemu-system-s39
39952 gemu	20	Θ	1713584	512480	8024	S	131.4	0.0	9:36.17	qemu-system-s39
39936 qemu	20	0	1727924	486156	8028	S	130.8	0.0	9:30.80	qemu-system-s39
39685 qemu	20	0	1699568	483452	8024	S	130.1	0.0	10:17.34	qemu-system-s39
39874 qemu	20	0	1635056	486732	8028	S	130.1	0.0	9:26.30	qemu-system-s39
39718 qemu	20	0	1649392	486188	8028	S	129.8	0.0	10:00.58	qemu-system-s39
40058 gemu	20	0	1708464	510620	8028	S	129.8	0.0	9:20.78	qemu-system-s39
39981 qemu	20	0	1758960	485816	8028	S	129.5	0.0	9:14.50	qemu-system-s39

Starting 4096 guests Guests running

[root@zs93k1 ~]# virsh list --all | wc -l 8796 [root@zs93k1 ~]# virsh list | wc -l 3985

[root@zs9	3k1 ~]# free	-h				
	total	used	free	shared	buffers	cached
Mem:	2.0T	1.3T	661G	268M	410M	1.1G
-/+ buffe	rs/cache:	1.3T	662G			
Swap:	976 <u>G</u>	08	976G			

Running CPU and network stress tools

Starting 4096 guests a running guest

				1 user nning,				00, 1.0 opped.			
) hi, 0.0 si	, 14.2 st	
KiB Me				, 2694		-		ree,	34100 buffe		
KiB Sw	ap:	0	total	,	0 used	,	0 f	ree.	177384 cache	d Mem	
PID	USER	PR	NI	VIRT	RES	SHR S	%CP	U %MEM	I TIME+ C	OMMAND	
2093		20			19020				567:23.50		
1	root	20	0	6104	4004	2076 S			-		
2	root	20	0	0	0	0 S	0.00	0 0.000) 0:00.00 k	threadd	
3	root	20	0	0	0	0 S	0.00	0 0.000	0:00.02 k	softirqd+	
5	root	0	-20	0	0	0 S	0.00	0 0.000) 0:00.00 k	worker/0+	
б	root	20	0	0	Θ	0 S	0.00	0 0.000) 0:00.11 k	worker/u+	
7	root	rt	0	0	0	0 S	0.00	0 0.000	0:00.00 r	igration+	
	root	20	0	0	0			0 0.000			
	root	20	Θ	0	0			0 0.000			
	root	rt	0	0	0			0 0.000		igration+	
	root	20	0	0	0			0 0.000		softirqd+	
	root		-20	0	0			0 0.000		worker/1+	
	root		-20	0	0			0 0.000			
	root	20	0	0	0			0 0.000			
	root		-20 -20	0	0			0 0.000			
	root			0	0			0 0.000			
18	root	0	-20	0	0	0 5	0.00	0 0.000	0:00.00 k	integrit+	
s93k1	a8500	9:~ # DS	auxl	grep ja	va						
oot				1064712		?	sl	Aug04	567:44 java	-classpath /	products/muncher/Muncher.jar com.ibm.wlm.tools.Munche
oot	29	963 0.0 9:~ #				tysclp0		03:18		color=auto	

Starting 4096 guests strict overcommit and glibc per-thread arenas

- We use many threads in QEMU, for vcpu threads, io threads,...
- Glibc has per-thread memory pools (arenas)
- Arenas are created per thread but are limited on the basis of cores the system has
- MALLOC_ARENA_MAX is calculated by ((NUMBER_OF_CPU_CORES) * (sizeof(long) == 4 ? 2 : 8))
 - 8 memory pools per core * 64 MB arena size
 - For example with 64 cores i.e. = $64 \times 8 = 512$ arenas
 - 512 arenas * 64 MB per arena = 32 GB
 - Uses lots of address space

Starting 4096 guests

strict overcommit and glibc per-thread arenas (continued)

- ...
- usually kernel memory accounting treads this correctly, but...
- ... with strict overcommit the entire memory is accounted as "in use"
- malloc() fails much earlier
- This will get worse as number of cores increase!
- Capped by MALLOC_MAX_ARENA
- Control by setting <qemu:env name='MALLOC_ARENA_MAX' value='16'/>

Migrating many guests concurrently

Migrating many guests concurrently – TCP port range for migration

- There's a default port range for migration in libvirt
- When we're running out of ports: error: internal error: Unable to find an unused port in range 'migration' (49152-49215)
- Ports can be specified as part of the virsh command line to circumvent this
- ...or configurable with migration_port_min and migration_port max in qemu.conf

Migrating many guests concurrently – max. SSH connections

- sshd has a default limit of 10 sessions
- When testing migration of > 64 guests we had to increase this limit
- Change /etc/ssh/sshd_config and set MaxSessions to a higher number # Authentication

#MaxSessions 128

QEMU: Memslot limitation

/*

* Some of the bitops functions do not support too long bitmaps.

- * This number must be determined not to exceed such limits.
- */

#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)</pre>

- Image: ((1UL << 31) -1) * 4k pages → 8TB</p>
- Limit is per memslot
- Currently we have only one memslot for RAM.
- Would need to implement support for multiple memslots in s390x

Model	Minimum	Maximum								
N30	64 GB	2.5 TB**								
N63	64 GB	5.0 TB								
N96	64 GB	7.5 TB								
NC9	64 GB	10.0 TB								
NE1	64 GB	10.0 TB								

Processor Memory

Host: system with 9TB memory

commit c47386fcb81833e266b0e955f127c92c195dcdc2 Author: Martin Schwidefsky <schwidefsky@de.ibm.com> Date: Wed May 13 14:33:22 2015 +0200

7cded342c: s390/mm: correct return value of pmd_pfn

Git commit 152125b7a882df36a55a8eadbea6d0edf1461ee7 "s390/mm: implement dirty bits for large segment table entries" broke the pmd_pfn function, it changed the return value from 'unsigned long' to 'int'. This **breaks all machine configurations with memory above the 8TB line**.

Cc: stable@vger.kernel.org # 3.17+ Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>

s390x/kvm: Irqchip route reallocation

- We create a new irqfd per virtqueue
- Every time a new irqfd is created we reallocate the irqchip routing table in the kernel
- With many devices and many virtqueues this causes delays
- Interface of KVM_SET_GSI_ROUTING allows to add a bunch of routing entries in one go. However currently it is not used that way. One entry is added after another.
- For every entry that's to be added we do ioctl(KVM_SET_GSI_ROUTING) and then in the kernel we allocate a new table, re-populate it and add the new entry.
- Fixed by adding all routes to the routing table in QEMU first and then do the ioctl to commit the routing table to the kernel

commit 35d4a70da363e3909beb5d74f35649db25a6004d Author: Jens Freimann <jfrei@linux.vnet.ibm.com> Date: Mon Jul 27 16:53:27 2015 +0200

s390x/kvm: make setting of in-kernel irq routes more efficient

KVM: IRQchip limit

- The in-kernel irqchip is limited to 1024 pins
- For s390 already extended to 4096
- When limit exceeded devices fall back to gemu internal irqfd handling
- Problem: one irqfd is set up per virtqueue (mapping to queue indicator), so queues per irqchip are exhausted fast
 - virtio-net devices possible = 4096 / 3 virtqueues = 1365
- Ideas:
 - Bump up number of pins even further
 - Tweak irqfd interface to support a payload containing an offset to the summary indicators.
 - Then we would not have to set up routes for every single virtqueue

Agenda

What is this about?

The test setup

What we tested

Challenges

Conclusion

Conclusion

- Linux (and KVM) scales quite well, most often a matter of adjusting ulimits
 - ipv6.sysctl.ip6_rt_max_size
 - sshd: #MaxSessions 128
 - libvirtd: min_port_range, max_port_range
 - systemd: LimitNOFILE
 - sysctl: kernel.pty.max, fs.aio-max-nr, fs.inotify.max_user_watches
- One problem in systemd which is already fixed upstream
- In-kernel IRQchip limits virtio devices
- Apart from some smaller issues, no major code findings in Libvirt/QEMU/KVM
- No fundamental design problems in our stack Libvirt/QEMU/KVM

Questions ?

Thank you!

Legal Statement

This work represents the view of the author and does not necessarily represent the view of IBM.

IBM, IBM(logo), z/Architecture, zSeries, Enterprise Systems Architecture/390, ESA/390, Enterprise Systems Architecture/370, ESA/370 and System/360 are trademarks and/or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds. Other company, product and service names may be trademarks or service marks of others.

IBM

Sources

- [1] https://pixabay.com/static/uploads/photo/2013/07/12/14/10/explosion-147909_640.png
- [2] http://uncyclopedia.wikia.com/wiki/File:EmuArmy.jpg
- [3] https://www.flickr.com/photos/107244436@N07/10807513426/
- [4] https://en.wikipedia.org/wiki/IBM_700/7000_series#/media/File:IBM_Electronic_Data_Pro cessing_Machine_-_GPN-2000-001881.jpg

■ [5]

https://en.wikipedia.org/wiki/IBM_zEnterprise_System#/media/File:Glowing_IBM_z13_and_ clock_-_cropped.JPG

, Agiorgio

- [6] https://www.flickr.com/photos/80497449@N04/10531620296/, Nicolas Raymond
- [7] IBM z13 Image Library
- [8] https://pixabay.com/en/explosion-detonation-blast-burst-147909/

Sources

- [9] https://openclipart.org/detail/131323/hard-disk
- [10] http://ngc891.blogdns.net/?p=383
- [11] https://en.wikipedia.org/wiki/Ad%C3%A9lie_penguin#/media/File:Automated_weighbridge _for_Ad%C3%A9lie_penguins_-_journal.pone.0085291.g002.png
- [12] https://www.flickr.com/photos/66944824@N05/17171489773
- [13] https://www.flickr.com/photos/colinkinner/2200500024
- [14] https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Process_vs._thread.svg/200px -Process_vs._thread.svg.png
- [15] https://openclipart.org/download/178295/RAM-Board.svg
- [16] https://openclipart.org/detail/212873/terminal