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THP pending optimizationsTHP pending optimizations
➢ QEMU support for the 2/4MB mmap alignments is 
still missing

➢ Mandatory to optimize for KVM (not as 
important without KVM except for the first and 
last 2/4MB)

➢ Use qemu_memalign instead of 
qemu_vmalloc

➢ mremap() optimization (posted to linux-mm)
➢ Boost THP and non-THP

➢ As usual with THP the guest speedup is 
more significant than on the bare metal
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QEMU THP alignmentQEMU THP alignment
@@ -2902,9 +2914,15 @@ ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char 
*name,
                                    PROT_EXEC|PROT_READ|PROT_WRITE,
                                    MAP_SHARED | MAP_ANONYMOUS, -1, 0);
 #else
-            new_block->host = qemu_vmalloc(size);
+#ifdef PREFERRED_RAM_ALIGN
+           if (size >= PREFERRED_RAM_ALIGN)
+                   new_block->host = qemu_memalign(PREFERRED_RAM_ALIGN, size);
+           else
+#endif
+                   new_block->host = qemu_vmalloc(size);
 #endif
             qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+            qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
         }
     }
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mremap(5GB) latency usecmremap(5GB) latency usec
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THP on patch THP off patch THP on THP off
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Working set estimationWorking set estimation
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➢ Patches posted on linux-mm
➢ They walk pfn and call get_page_unless_zero() 
and then it walk the rmap of the page if a 
reference is obtained to mangle the accessed bit

➢ Not safe to call that on THP tail pages
➢ Proposed rework for the 

get_page()/put_page() to get a safe 
reference on tail pages

➢ The rework slowdown get_page() on 
head pages (common  case)

➢ It should be possible to solve it without slowing 
down get_page() on the head



  

Ballooning improvementsBallooning improvements
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➢ The ballooning guest driver needs to become THP 
friendly

➢ The guest should use compaction to release 
2MB (or 4M on 32bit noPAE) of guest-
physically-contiguous naturally aligned 
regions

➢ The working set estimation algorithm worked on by 
Google in the host (for soft-limits in cgroups) could 
drive the balloon driver automatically

➢ aka auto-ballooning
➢ Page hinting is an alternative to this



  

KSM using dirty bitKSM using dirty bit
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➢ A patch is available to make KSM use the dirty bit 
to detect “frequently changing memory” that is not 
worth trying to merge

➢ Detects equal overwrite too
➢ Problem: no dirty bit in EPT

➢ So for the time being it's not very useful for 
KVM

➢ Flushing the dirty bit from the TLB is also not 
cheap with several vCPUs

➢ It reduces the CPU load for the scanning but it 
may slowdown the guests a bit

➢ We may consider it in the future



  

KVM NUMA awarenessKVM NUMA awareness
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➢ I.e. making Linux NUMA aware
➢ The Linux Scheduler currently is blind about the 
memory placement of the process

➢ MPOL_DEFAULT allocates memory from the local 
node of the current CPU

➢ It all works well if the process isn't migrated by the 
scheduler to a different NUMA node later

➢ Or if the memory gets full in the local node and 
the memory allocation spills on other nodes

➢ Short lived tasks (like gcc) are handled pretty well



  

NODE #1NODE #0

KVM startup on CPU #0KVM startup on CPU #0
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CPU #0 CPU #1

RAM #0 RAM #1

KVM



  

NODE #1NODE #0

KVM allocates from RAM #0KVM allocates from RAM #0
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Fast 
access

No NUMA hard bindings and MPOL_DEFAULT policy



  

NODE #1NODE #0

Scheduler CPU migrationScheduler CPU migration
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Make -j Make -j



  

NODE #1NODE #0

““make -j” load goes awaymake -j” load goes away
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Slow

The Linux Scheduler is blind at this point: KVM may 
stay in CPU #1 forever



  

The scheduler is memory blindThe scheduler is memory blind
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➢ Short lived tasks are ok
➢ Long lived tasks like KVM can suffer badly from 
using remote memory for extended periods of 
times

➢ Because they live longer, they're more likely to 
be migrated if there's some CPU overcommit

➢ It's fairly cheap for the CPU to follow the memory
➢ We would like the CPU to follow the memory

➢ CPU placement based on memory placement
➢ We would like to achieve the same performance of 
the NUMA bindings without having to use them



  

What we have todayWhat we have today
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➢ Hard NUMA bindings
➢ sys_mempolicy
➢ sys_mbind
➢ sys_sched_setaffinity
➢ sys_move_pages
➢ /dev/cpuset

➢ Job manager can monitor memory 
pressure and act accordingly

➢ All depends on numbers taken for example from 
the next slide to split the machine resources

➢ Full topology available in /sys



  

Scheduler domainsScheduler domains
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0-24

0-5,12-17 6-11,18-23

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

Example of a common 2 nodes, 2 sockets, 12 cores, 24 threads system



  

Hard bindings and hypervisorsHard bindings and hypervisors
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➢ Cloud nodes powered by virtualization hypervisors
➢ Dynamic load

➢ VM started/shutdown/migrated
➢ Variable amount of vRAM and vCPUs

➢ A job manager can do a static placement
➢ But not as efficient to tell which vCPUs are 

idle and which memory is important for 
each process/thread at any given time

➢ The host kernel probably can do better at 
optimizing a dynamic workload



  

How bad is remote RAM? (bench)How bad is remote RAM? (bench)
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#define SIZE (6UL*1024*1024*1024)
#define THREADS 24

void *thread(void * arg)
{

char *p = arg;
int i;
for (i = 0; i < 3; i++) {

if (memcmp(p, p+SIZE/2, SIZE/2))
printf("error\n"), exit(1);

}
return NULL;

}
[..]

if ((pid = fork()) < 0)
perror("fork"), exit(1);

[..]
#ifdef 1

if (sched_setaffinity(0, sizeof(cpumask), &cpumask) < 0)
perror("sched_setaffinity"), exit(1);

#endif
if (set_mempolicy(MPOL_BIND, &nodemask, 3) < 0)

perror("set_mempolicy"), printf("%lu\n", nodemask), exit(1);
bzero(p, SIZE);
for (i = 0; i < THREADS; i++)

if (pthread_create(&pthread[i], NULL, thread, p) != 0)
perror("pthread_create"), exit(1);

for (i = 0; i < THREADS; i++)
if (pthread_join(pthread[i], NULL) != 0)

perror("pthread_join"), exit(1);



  

mempolicy + setaffinity localmempolicy + setaffinity local
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Best possible CPU/RAM NUMA placement
All CPUs only work on local RAM



  

mempolicy + setaffinity remotemempolicy + setaffinity remote
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Worst possible CPU/RAM NUMA placement
All CPUs only work on remote RAM



  

Only mempolicyOnly mempolicy
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

Only RAM NUMA binding with mempolicy()
The host CPU scheduler can move all threads anywhere
The CPU scheduler has no memory awareness



  

Mempolicy + CPU-follow-memoryMempolicy + CPU-follow-memory
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

The host CPU scheduler understand the parent process
has most of the RAM allocated in NODE 0 and the child in NODE 1
No scheduler hints from userland
Mempolicy() doesn't have any scheduler effect



  

1 thread x 2 processes1 thread x 2 processes
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mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 2 4 6 8 10 12 14 16 18

seconds
% error

Only 2 CPUs used, 2 nodes 2 sockets 12 cores 24 threads



  

12 threads x 2 processes12 threads x 2 processes
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mempolicy + sched_setscheduler local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 5 10 15 20 25

seconds
% error

All 24 CPUs maxed out, 2 nodes 2 sockets 12 cores 24 threads



  

24 threads x 2 processes24 threads x 2 processes
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mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 10 20 30 40 50 60 70

seconds
% error

Double CPU overcommit, 2 nodes 2 sockets 12 cores 24 threads



  

CPU-follow-memoryCPU-follow-memory
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➢ Implemented as a proof of concept
➢ For now only good enough to proof that it 

performs equivalent to sched_setaffinity()
➢ CPU-follow-memory not enough

➢ We still run a sys_mempolicy!
➢ Must be combined with memory-follow-CPU
➢ When there are more threads than CPUs in the 
node things are more complex

➢ “mm” tracking not enough: vma/page per-
thread tracking needed (not trivial to get that 
info without page faults)



  

memory-follow-CPUmemory-follow-CPU
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➢ Converge the RAM of the process into the node 
where it's running on by migrating it in the 
background

➢ If CPU-follow-memory doesn't follow memory 
because of too high load in the preferred nodes

➢ Migrate the memory of the process to the node 
where the process is really running on and 
converge there

➢ Have CPU-follow-memory temporarily ignore 
the current memory placement and follow 
CPU instead until we converged



  

Auto NUMA memory migrationAuto NUMA memory migration
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➢ We need to find a process that has RAM in NODE 
1 and wants to converge into NODE 0, in order to 
migrate the RAM of another process from NODE 0 
to NODE 1

➢ This will keep the memory pressure balanced
➢ Pagecache/swapcache/buffercache may be 

migrated as fallback but active process 
memory should be preferred to get double 
benenfit

➢ Memory-follow-CPU migrations should 
concentrate on processes with high CPU utilization 

➢ The migrated memory ideally should be in the 
working set of the process



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU wants to migrate the RAM of Process A 
from NODE0 to NODE 1

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU need to find another process
with memory on NODE 1 that wants to migrate to NODE 0
Process B is ideal

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU migrates the memory...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

A

RAM Process B

NODE 1

RAM Process A

B

memory-follow-CPU repeats...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

knumadknumad
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➢ CPU-follow-memory is currently entirely fed with 
information from a knumad kernel daemon that 
scans the process memory in the background

➢ It could be changed to static accounting to help 
short lived tasks too

➢ There's a time-lag from when memory is first 
allocated and when CPU-follow-memory 
notices (this explains the slight slower perf)

➢ Initially, when no memory information exists 
yet, MPOL_DEFAULT is used

➢ knumad may later drive memory-follow-CPU too
➢ Working set estimation is possible



  

Anonymous memoryAnonymous memory
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➢ knumad only considers not shared anonymous 
memory

➢ For KVM it is enough
➢ This will likely have to change
➢ It'll be harder to deal with CPU/RAM placement 

of shared memory



  

Per-thread informationPer-thread information
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➢ The information in the pagetables is per-process
➢ To know which part of the process memory each 
thread is accessing there are various ways

➢ … or old ways like forcing page faults
➢ Migrate-on-fault does that
➢ Migrate-on-fault heavyweight with THP
➢ Migrating memory in the background 

should be better than migrate-on-fault 
because it won't always hang the process 
during migrate_pages()



  

Another way: soft NUMA bindingsAnother way: soft NUMA bindings
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➢ Instead of setting hard numbers like 0-5,12-17 and 
node 0 manually we could create a soft API:

  numa_group_id = numa_group_create();

 numa_group_mem(range, numa_group_id);

 numa_group_task(tid, numa_group_id);

➢ This would allow to easily create a vtopology for 
the guest by changing QEMU

➢ It would not require special tracking as QEMU 
would specify which vCPUs belong to which 
vNODE to the host kernel.

➢ But if the guest spans more than one host node, 
all guest apps should use this API too...



  

Soft NUMA bindingsSoft NUMA bindings
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➢ I think a full automatic way should be tried first...
➢ Full automatic NUMA awareness requires more 

intelligence on the kernel side
➢ Cons of soft NUMA bindings:

➢ APIs must be maintained forever
➢ APIs don't solve the problem of applications not 

NUMA aware
➢ Not easy for programmer to describe to the 

kernel which memory each thread is going to 
access more frequently

➢ Trivial for QEMU, but not so much for other 
users



  

Q/AQ/A
➢ You're very welcome!
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