

What's Coming From the What's Coming From the
MM For KVMMM For KVM
Red Hat, Inc.

Andrea Arcangeli
aarcange at redhat.com

KVM Forum 2011
Vancouver, CA

15 Aug 2011
Copyright © 2011 Red Hat Inc.

http://www.redhat.com/

THP pending optimizationsTHP pending optimizations
➢ QEMU support for the 2/4MB mmap alignments is
still missing

➢ Mandatory to optimize for KVM (not as
important without KVM except for the first and
last 2/4MB)

➢ Use qemu_memalign instead of
qemu_vmalloc

➢ mremap() optimization (posted to linux-mm)
➢ Boost THP and non-THP

➢ As usual with THP the guest speedup is
more significant than on the bare metal

Copyright © 2011 Red Hat Inc.

QEMU THP alignmentQEMU THP alignment
@@ -2902,9 +2914,15 @@ ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char
*name,
 PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
 #else
- new_block->host = qemu_vmalloc(size);
+#ifdef PREFERRED_RAM_ALIGN
+ if (size >= PREFERRED_RAM_ALIGN)
+ new_block->host = qemu_memalign(PREFERRED_RAM_ALIGN, size);
+ else
+#endif
+ new_block->host = qemu_vmalloc(size);
 #endif
 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
 }
 }

Copyright © 2011 Red Hat Inc.

mremap(5GB) latency usecmremap(5GB) latency usec

Copyright © 2011 Red Hat Inc.

THP on patch THP off patch THP on THP off
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

mremap 5GB latency usec

Working set estimationWorking set estimation

Copyright © 2011 Red Hat Inc.

➢ Patches posted on linux-mm
➢ They walk pfn and call get_page_unless_zero()
and then it walk the rmap of the page if a
reference is obtained to mangle the accessed bit

➢ Not safe to call that on THP tail pages
➢ Proposed rework for the

get_page()/put_page() to get a safe
reference on tail pages

➢ The rework slowdown get_page() on
head pages (common case)

➢ It should be possible to solve it without slowing
down get_page() on the head

Ballooning improvementsBallooning improvements

Copyright © 2011 Red Hat Inc.

➢ The ballooning guest driver needs to become THP
friendly

➢ The guest should use compaction to release
2MB (or 4M on 32bit noPAE) of guest-
physically-contiguous naturally aligned
regions

➢ The working set estimation algorithm worked on by
Google in the host (for soft-limits in cgroups) could
drive the balloon driver automatically

➢ aka auto-ballooning
➢ Page hinting is an alternative to this

KSM using dirty bitKSM using dirty bit

Copyright © 2011 Red Hat Inc.

➢ A patch is available to make KSM use the dirty bit
to detect “frequently changing memory” that is not
worth trying to merge

➢ Detects equal overwrite too
➢ Problem: no dirty bit in EPT

➢ So for the time being it's not very useful for
KVM

➢ Flushing the dirty bit from the TLB is also not
cheap with several vCPUs

➢ It reduces the CPU load for the scanning but it
may slowdown the guests a bit

➢ We may consider it in the future

KVM NUMA awarenessKVM NUMA awareness

Copyright © 2011 Red Hat Inc.

➢ I.e. making Linux NUMA aware
➢ The Linux Scheduler currently is blind about the
memory placement of the process

➢ MPOL_DEFAULT allocates memory from the local
node of the current CPU

➢ It all works well if the process isn't migrated by the
scheduler to a different NUMA node later

➢ Or if the memory gets full in the local node and
the memory allocation spills on other nodes

➢ Short lived tasks (like gcc) are handled pretty well

NODE #1NODE #0

KVM startup on CPU #0KVM startup on CPU #0

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

NODE #1NODE #0

KVM allocates from RAM #0KVM allocates from RAM #0

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Fast
access

No NUMA hard bindings and MPOL_DEFAULT policy

NODE #1NODE #0

Scheduler CPU migrationScheduler CPU migration

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Make -j Make -j

NODE #1NODE #0

““make -j” load goes awaymake -j” load goes away

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Slow

The Linux Scheduler is blind at this point: KVM may
stay in CPU #1 forever

The scheduler is memory blindThe scheduler is memory blind

Copyright © 2011 Red Hat Inc.

➢ Short lived tasks are ok
➢ Long lived tasks like KVM can suffer badly from
using remote memory for extended periods of
times

➢ Because they live longer, they're more likely to
be migrated if there's some CPU overcommit

➢ It's fairly cheap for the CPU to follow the memory
➢ We would like the CPU to follow the memory

➢ CPU placement based on memory placement
➢ We would like to achieve the same performance of
the NUMA bindings without having to use them

What we have todayWhat we have today

Copyright © 2011 Red Hat Inc.

➢ Hard NUMA bindings
➢ sys_mempolicy
➢ sys_mbind
➢ sys_sched_setaffinity
➢ sys_move_pages
➢ /dev/cpuset

➢ Job manager can monitor memory
pressure and act accordingly

➢ All depends on numbers taken for example from
the next slide to split the machine resources

➢ Full topology available in /sys

Scheduler domainsScheduler domains

Copyright © 2011 Red Hat Inc.

0-24

0-5,12-17 6-11,18-23

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

Example of a common 2 nodes, 2 sockets, 12 cores, 24 threads system

Hard bindings and hypervisorsHard bindings and hypervisors

Copyright © 2011 Red Hat Inc.

➢ Cloud nodes powered by virtualization hypervisors
➢ Dynamic load

➢ VM started/shutdown/migrated
➢ Variable amount of vRAM and vCPUs

➢ A job manager can do a static placement
➢ But not as efficient to tell which vCPUs are

idle and which memory is important for
each process/thread at any given time

➢ The host kernel probably can do better at
optimizing a dynamic workload

How bad is remote RAM? (bench)How bad is remote RAM? (bench)

Copyright © 2011 Red Hat Inc.

#define SIZE (6UL*1024*1024*1024)
#define THREADS 24

void *thread(void * arg)
{

char *p = arg;
int i;
for (i = 0; i < 3; i++) {

if (memcmp(p, p+SIZE/2, SIZE/2))
printf("error\n"), exit(1);

}
return NULL;

}
[..]

if ((pid = fork()) < 0)
perror("fork"), exit(1);

[..]
#ifdef 1

if (sched_setaffinity(0, sizeof(cpumask), &cpumask) < 0)
perror("sched_setaffinity"), exit(1);

#endif
if (set_mempolicy(MPOL_BIND, &nodemask, 3) < 0)

perror("set_mempolicy"), printf("%lu\n", nodemask), exit(1);
bzero(p, SIZE);
for (i = 0; i < THREADS; i++)

if (pthread_create(&pthread[i], NULL, thread, p) != 0)
perror("pthread_create"), exit(1);

for (i = 0; i < THREADS; i++)
if (pthread_join(pthread[i], NULL) != 0)

perror("pthread_join"), exit(1);

mempolicy + setaffinity localmempolicy + setaffinity local

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Best possible CPU/RAM NUMA placement
All CPUs only work on local RAM

mempolicy + setaffinity remotemempolicy + setaffinity remote

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Worst possible CPU/RAM NUMA placement
All CPUs only work on remote RAM

Only mempolicyOnly mempolicy

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

Only RAM NUMA binding with mempolicy()
The host CPU scheduler can move all threads anywhere
The CPU scheduler has no memory awareness

Mempolicy + CPU-follow-memoryMempolicy + CPU-follow-memory

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

The host CPU scheduler understand the parent process
has most of the RAM allocated in NODE 0 and the child in NODE 1
No scheduler hints from userland
Mempolicy() doesn't have any scheduler effect

1 thread x 2 processes1 thread x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 2 4 6 8 10 12 14 16 18

seconds
% error

Only 2 CPUs used, 2 nodes 2 sockets 12 cores 24 threads

12 threads x 2 processes12 threads x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setscheduler local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 5 10 15 20 25

seconds
% error

All 24 CPUs maxed out, 2 nodes 2 sockets 12 cores 24 threads

24 threads x 2 processes24 threads x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 10 20 30 40 50 60 70

seconds
% error

Double CPU overcommit, 2 nodes 2 sockets 12 cores 24 threads

CPU-follow-memoryCPU-follow-memory

Copyright © 2011 Red Hat Inc.

➢ Implemented as a proof of concept
➢ For now only good enough to proof that it

performs equivalent to sched_setaffinity()
➢ CPU-follow-memory not enough

➢ We still run a sys_mempolicy!
➢ Must be combined with memory-follow-CPU
➢ When there are more threads than CPUs in the
node things are more complex

➢ “mm” tracking not enough: vma/page per-
thread tracking needed (not trivial to get that
info without page faults)

memory-follow-CPUmemory-follow-CPU

Copyright © 2011 Red Hat Inc.

➢ Converge the RAM of the process into the node
where it's running on by migrating it in the
background

➢ If CPU-follow-memory doesn't follow memory
because of too high load in the preferred nodes

➢ Migrate the memory of the process to the node
where the process is really running on and
converge there

➢ Have CPU-follow-memory temporarily ignore
the current memory placement and follow
CPU instead until we converged

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

➢ We need to find a process that has RAM in NODE
1 and wants to converge into NODE 0, in order to
migrate the RAM of another process from NODE 0
to NODE 1

➢ This will keep the memory pressure balanced
➢ Pagecache/swapcache/buffercache may be

migrated as fallback but active process
memory should be preferred to get double
benenfit

➢ Memory-follow-CPU migrations should
concentrate on processes with high CPU utilization

➢ The migrated memory ideally should be in the
working set of the process

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU wants to migrate the RAM of Process A
from NODE0 to NODE 1

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU need to find another process
with memory on NODE 1 that wants to migrate to NODE 0
Process B is ideal

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU migrates the memory...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

A

RAM Process B

NODE 1

RAM Process A

B

memory-follow-CPU repeats...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

knumadknumad

Copyright © 2011 Red Hat Inc.

➢ CPU-follow-memory is currently entirely fed with
information from a knumad kernel daemon that
scans the process memory in the background

➢ It could be changed to static accounting to help
short lived tasks too

➢ There's a time-lag from when memory is first
allocated and when CPU-follow-memory
notices (this explains the slight slower perf)

➢ Initially, when no memory information exists
yet, MPOL_DEFAULT is used

➢ knumad may later drive memory-follow-CPU too
➢ Working set estimation is possible

Anonymous memoryAnonymous memory

Copyright © 2011 Red Hat Inc.

➢ knumad only considers not shared anonymous
memory

➢ For KVM it is enough
➢ This will likely have to change
➢ It'll be harder to deal with CPU/RAM placement

of shared memory

Per-thread informationPer-thread information

Copyright © 2011 Red Hat Inc.

➢ The information in the pagetables is per-process
➢ To know which part of the process memory each
thread is accessing there are various ways

➢ … or old ways like forcing page faults
➢ Migrate-on-fault does that
➢ Migrate-on-fault heavyweight with THP
➢ Migrating memory in the background

should be better than migrate-on-fault
because it won't always hang the process
during migrate_pages()

Another way: soft NUMA bindingsAnother way: soft NUMA bindings

Copyright © 2011 Red Hat Inc.

➢ Instead of setting hard numbers like 0-5,12-17 and
node 0 manually we could create a soft API:

 numa_group_id = numa_group_create();

 numa_group_mem(range, numa_group_id);

 numa_group_task(tid, numa_group_id);

➢ This would allow to easily create a vtopology for
the guest by changing QEMU

➢ It would not require special tracking as QEMU
would specify which vCPUs belong to which
vNODE to the host kernel.

➢ But if the guest spans more than one host node,
all guest apps should use this API too...

Soft NUMA bindingsSoft NUMA bindings

Copyright © 2011 Red Hat Inc.

➢ I think a full automatic way should be tried first...
➢ Full automatic NUMA awareness requires more

intelligence on the kernel side
➢ Cons of soft NUMA bindings:

➢ APIs must be maintained forever
➢ APIs don't solve the problem of applications not

NUMA aware
➢ Not easy for programmer to describe to the

kernel which memory each thread is going to
access more frequently

➢ Trivial for QEMU, but not so much for other
users

Q/AQ/A
➢ You're very welcome!

Copyright © 2011 Red Hat Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

