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Benefit of hugepagesBenefit of hugepages
➢ Enlarge TLB size

➢ TLB is separate for 4k and 2m pages
➢ Speed up TLB miss

➢ Need 3 accesses to memory instead of 4 to 
refill the TLB

➢ Faster to allocate
➢ Initial page fault huge speed up (like 50% 

faster)
➢ Cons: clear_page/copy_page less cache friendly
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TLB miss cost 4k pagesTLB miss cost 4k pages
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TLB miss cost 2M pagesTLB miss cost 2M pages
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NPT/EPT TLB miss costNPT/EPT TLB miss cost
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➢ Guest THP off, KVM host THP off
➢ 4 guest levels x 5 NTP accesses + 4 NPT 

accesses for final gpa->hpa translation = 24 
memory accesses

➢ Guest THP off, KVM host THP on
➢ 4 guest levels x 4 NTP accesses + 3 NPT 

accesses final gpa->hpa = 19 accesses 
➢ Guest THP on, KVM host THP on

➢ 3 x 4 + 3 = 15 accesses
➢ (not counting data access)



  

Cache effectCache effect
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➢ To access 16G of memory the CPU has to read
➢ 32MBytes worth of ptes (not counting 

pmd/pud/pgd)
➢ With hugepages the CPU will read only 

64KBytes of hugepages
➢ 64KBytes fits in CPU cache, 32MBytes don't...



  

Limit of hugetlbfsLimit of hugetlbfs
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➢ Hugepages can be used with hugetlbfs
➢ They can't be swapped out
➢ They better be reserved at boot
➢ Hugepages and regular pages can't be mixed 

in the same vma
➢ If reservation is not used and  dynamic 

allocation fails things go bad in KVM
➢ Requires admin privilege and libhugetlbfs tricks
➢ hugetlbfs is growing like a second but inferior 

Linux VM with its own paths, as people adds 
more features to hugetlbfs to behave more 
like tmpfs



  

Hugetlbfs for databaseHugetlbfs for database
➢ Reservation at boot time may not be big deal with 
database

➢ 1 database
➢ 1 machine
➢ 1 database cache
➢ 1 database cache size set in config file or GUI
➢ 1 reservation of hugepages with known size
➢ Swapping is still missing (some DBMS want to 

swap its shared memory)
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hugetlbfs poll!hugetlbfs poll!
➢ Raise hand

➢ who is running any applications under 
libhugetlbfs/hugetlbfs on his own production 
laptop/workstation/server

➢ Even the OpenOffice used to prepare this 
presentation is backed by some Transparent 
Hugepage...
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Hypervisors and hugetlbfsHypervisors and hugetlbfs
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➢ Hugetlbfs is not good for KVM
➢ Unknown number of virtual machines
➢ Unknown amount of memory used by virtual 

machines
➢ We want to use as many hugepages as 

available to back guest physical memory 
(especially with NPT/EPT)

➢ Virtual machines are started, shutdown, 
migrated on demand by user or RHEV-M

➢ We don't want to alter behavior of boosted 
virtual machines and we need overcommit 
(and KSM) as usual



  

Transparent Hugepage designTransparent Hugepage design
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➢ Any Linux process will receive 2M pages
➢ if the mmap region is 2M naturally aligned

➢ Hugepages are only mapped by huge pmd
➢ When VM pressure triggers the hugepage are split

➢ Then they can be swapped out as 4k pages
➢ Tries to modify as little code as possible
➢ Entirely transparent to userland
➢ Already working with KVM with NPT/EPT and 
shadow MMU

➢ Boost for page faults too and later the CPU 
accesses memory faster



  

THP on anonymous memoryTHP on anonymous memory
➢ Current implementation only covers anonymous 
memory (MAP_ANONYMOUS, i.e. malloc())

➢ KVM guest physical memory is incidentally 
backed by anonymous memory ;)

➢ In the future database may require tmpfs to use 
transparent hugepages too if they want to 
swap (database main painful limit of hugetlbfs 
is the lack of swapping)
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THP sysfs enabledTHP sysfs enabled
➢ /sys/kernel/mm/transparent_hugepage/enabled

➢ [always] madvise never
➢ Try to use THP on every big enough vma to 

fit 2M pages
➢ always [madvise] never

➢ Only inside MAD_HUGEPAGE regions
➢ Applies to khugepaged too

➢ always madvise [never]
➢ Never use THP
➢ khugepaged quits

➢ Default selected at build time (enabled|madvise)
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THP kernel boot paramTHP kernel boot param
➢ To alter the default build time setting

➢ transparent_hugepage=always
➢ transparent_hugepage=madvise
➢ transparent_hugepage=never

➢ khugepaged isn't even started

Copyright © 2009 Red Hat Inc.



  

madvise(MADV_HUGEPAGE)madvise(MADV_HUGEPAGE)
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➢ To use hugepages only in specific regions
➢ To avoid altering the memory footprint
➢ Embedded systems want to use it

➢ Becomes effective when sysfs enabled is set 
to“madvise”

➢ Better than libhugetlbfs
➢ swap
➢ full userland transparency
➢ no root privilege
➢ no library dependency



  

split_huge_pagesplit_huge_page
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➢ Low code impact
➢ Try to stay self contained

➢ If the code is not THP aware it's enough to call 
split_huge_page() to make it THP aware

➢ then it's business as usual
➢ 1 liner trivial change vs >100 lines of non trivial 
code

➢ Over time we need to minimize the use of 
split_huge_page

➢ Like the big kernel lock (lock_kernel() going away 
over time)



  

collapse_huge_pagecollapse_huge_page
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➢ “khugepaged” scans the virtual address space
➢ it collapses 512 4k pages in one 2M page
➢ it converts the 512 ptes to a huge pmd

➢ “pages_to_scan”
➢ “scan_sleep_millisecs” (can be set to 0)
➢ “alloc_sleep_millisecs”

➢ Throttle THP allocations in case of 
fragmentation



  

Transparent Hugepages and KVMTransparent Hugepages and KVM
➢ We need THP in both guest and host

➢ So the CPU can use the 2M TLB for the guest
➢ This shows the power of KVM design

➢ same algorithm
➢ same code
➢ same kernel image

➢ For both KVM hypervisor and guest OS
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THP and kbuildTHP and kbuild
➢ GCC allocations are specially optimized (no glibc)

➢ Requires a small tweak to gcc
➢ Heavily parallel
➢ Heavily MMU intensive
➢ Worst case benchmark for THP, especially on bare 
metal

➢ Small working set for each task
➢ It even includes `make clean` etc...

➢ Phenom X4 kbuild (no virt)
➢ 2.5% faster with THP
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gcc patch (trivial)gcc patch (trivial)
➢ @@ -450,6 +450,11 @@
➢  #define BITMAP_SIZE(Num_objects) \
➢    (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
➢  
➢ +#ifdef __x86_64__
➢ +#define HPAGE_SIZE (2*1024*1024)
➢ +#define GGC_QUIRE_SIZE 512
➢ +#endif
➢ +
➢  /* Allocate pages in chunks of this size, to throttle calls to memory
➢     allocation routines.  The first page is used, the rest go onto the
➢     free list.  This cannot be larger than HOST_BITS_PER_INT for the
➢ @@ -654,6 +659,23 @@
➢  #ifdef HAVE_MMAP_ANON
➢    char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
➢                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +#ifdef HPAGE_SIZE
➢ +  if (!(size & (HPAGE_SIZE-1)) &&
➢ +      page != (char *) MAP_FAILED && (size_t) page & (HPAGE_SIZE-1)) {
➢ +         char *old_page;
➢ +         munmap(page, size);
➢ +         page = (char *) mmap (pref, size + HPAGE_SIZE-1,
➢ +                               PROT_READ | PROT_WRITE,
➢ +                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +         old_page = page;
➢ +         page = (char *) (((size_t)page + HPAGE_SIZE-1)
➢ +                          & ~(HPAGE_SIZE-1));
➢ +         if (old_page != page)
➢ +                 munmap(old_page, page-old_page);
➢ +         if (page != old_page + HPAGE_SIZE-1)
➢ +                 munmap(page+size, old_page+HPAGE_SIZE-1-page);
➢ +  }
➢ +#endif
➢Copyright © 2010 Red Hat Inc.



  

`perf` of kbuild (real life)`perf` of kbuild (real life)
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

====== build ======
#!/bin/bash
make clean >/dev/null; make -j32 >/dev/null
===================
THP always host (base result)
 Performance counter stats for './build' (3 runs):

      4420734012848  cycles                     ( +-   0.007% )
      2692414418384  instructions             #      0.609 IPC     ( +-   0.000% )
       696638665612  dTLB-loads                 ( +-   0.001% )
         2982343758  dTLB-load-misses           ( +-   0.051% )

       83.855147696  seconds time elapsed   ( +-   0.058% )

THP never host (slowdown 4.06%)
 Performance counter stats for './build' (3 runs):
      4599325985460  cycles                     ( +-   0.013% )
      2747874065083  instructions             #      0.597 IPC     ( +-   0.000% )
       710631792376  dTLB-loads                 ( +-   0.000% )
         4425816093  dTLB-load-misses           ( +-   0.039% )

       87.260443531  seconds time elapsed   ( +-   0.075% )
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kbuild bench (shorter is better)kbuild bench (shorter is better)
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qemu-kvm translate.oqemu-kvm translate.o
➢ Phenom X4 qemu-kvm translate.o build (no virt)

➢ 10% faster with THP
➢ this is a single gcc task running

➢ Not parallel
➢ no `make -jxx`
➢ no `make clean`

➢ Will follow the result on 24-way SMP

Copyright © 2010 Red Hat Inc.



  

`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

        40746051351  cycles                     ( +-   5.597% )
        36394696366  instructions             #      0.893 IPC     ( +-   0.007% )
         9602461977  dTLB-loads                 ( +-   0.006% )
           45123574  dTLB-load-misses           ( +-   0.614% )

       13.920436128  seconds time elapsed   ( +-   5.600% )

THP never bare metal (9.10% slower)

        44492051930  cycles                     ( +-   5.189% )
        36757849113  instructions             #      0.826 IPC     ( +-   0.001% )
         9693482648  dTLB-loads                 ( +-   0.004% )
           63675970  dTLB-load-misses           ( +-   0.598% )

       15.188315986  seconds time elapsed   ( +-   5.194% )
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3.45% faster

15.84% slower

Base result

21.17% slower

0.11% slower

25.20% slower

28.48% slower



  

Hierarchical INTegrationHierarchical INTegration
➢ No THP related modification required
➢ Performance of scientific computing (Y)

➢ In function on the memory size (X)
➢ Show cache sizes etc..

➢ No MMU guest mangling (optimal for EPT off)
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NOTE: no THP related modification to the JVM



  

Other resultsOther results
➢ KVM with THP on guest and host

➢ sometime faster than bare metal w/o THP
➢ “/usr/bin/sort -b 1200M /tmp/largerand” no virt

➢ 6% faster with THP (reported on lkml)
➢ Bare metal SPECJBB

➢ 18%?!? faster
➢ Vmware workstation SPECJBB with hugetlbfs in 
guest

➢ 22% faster with THP (reported on lkml)
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Transparent Hugepages futureTransparent Hugepages future
➢ Enabled by default in RHEL6 (guest & host)
➢ Memory compaction included in 2.6.35

➢ Memory compaction motivated by THP
➢ Hopefully THP will be merged in 2.3.36-rc?
➢ KSM must learn about transparent hugepages
➢ Remove split_huge_page in mremap
➢ glibc?
➢ Possibly expand into tmpfs but hugetlbfs remains:

➢ some archs can't mix different page sizes
➢ Too big page_size isn't allocatable
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Q/AQ/A
➢ You're very welcome!

➢ Open http://git.kernel.org and then search “aa.git”
➢ http://git.kernel.org/?

p=linux/kernel/git/andrea/aa.git;a=shortlog

➢ First: git clone 
git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git

➢ Later: git fetch; git checkout -f origin/master
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