

Transparent Hugepage Transparent Hugepage
SupportSupport

Red Hat Inc.

Andrea Arcangeli
aarcange at redhat.com

KVM Forum 2010
Boston

9 Aug 2010
Copyright © 2010 Red Hat Inc.

Benefit of hugepagesBenefit of hugepages
➢ Enlarge TLB size

➢ TLB is separate for 4k and 2m pages
➢ Speed up TLB miss

➢ Need 3 accesses to memory instead of 4 to
refill the TLB

➢ Faster to allocate
➢ Initial page fault huge speed up (like 50%

faster)
➢ Cons: clear_page/copy_page less cache friendly

Copyright © 2009 Red Hat Inc.

TLB miss cost 4k pagesTLB miss cost 4k pages

Copyright © 2009 Red Hat Inc.

pgd

pud

pmd

pte

Virt
addr

RAM

TLB miss cost is 4 memory access

TLB miss cost 2M pagesTLB miss cost 2M pages

Copyright © 2009 Red Hat Inc.

pgd

pud

pmd

pte

Virt
addr

RAM

TLB miss cost is 3 memory access

NPT/EPT TLB miss costNPT/EPT TLB miss cost

Copyright © 2009 Red Hat Inc.

➢ Guest THP off, KVM host THP off
➢ 4 guest levels x 5 NTP accesses + 4 NPT

accesses for final gpa->hpa translation = 24
memory accesses

➢ Guest THP off, KVM host THP on
➢ 4 guest levels x 4 NTP accesses + 3 NPT

accesses final gpa->hpa = 19 accesses
➢ Guest THP on, KVM host THP on

➢ 3 x 4 + 3 = 15 accesses
➢ (not counting data access)

Cache effectCache effect

Copyright © 2009 Red Hat Inc.

➢ To access 16G of memory the CPU has to read
➢ 32MBytes worth of ptes (not counting

pmd/pud/pgd)
➢ With hugepages the CPU will read only

64KBytes of hugepages
➢ 64KBytes fits in CPU cache, 32MBytes don't...

Limit of hugetlbfsLimit of hugetlbfs

Copyright © 2009 Red Hat Inc.

➢ Hugepages can be used with hugetlbfs
➢ They can't be swapped out
➢ They better be reserved at boot
➢ Hugepages and regular pages can't be mixed

in the same vma
➢ If reservation is not used and dynamic

allocation fails things go bad in KVM
➢ Requires admin privilege and libhugetlbfs tricks
➢ hugetlbfs is growing like a second but inferior

Linux VM with its own paths, as people adds
more features to hugetlbfs to behave more
like tmpfs

Hugetlbfs for databaseHugetlbfs for database
➢ Reservation at boot time may not be big deal with
database

➢ 1 database
➢ 1 machine
➢ 1 database cache
➢ 1 database cache size set in config file or GUI
➢ 1 reservation of hugepages with known size
➢ Swapping is still missing (some DBMS want to

swap its shared memory)

Copyright © 2009 Red Hat Inc.

hugetlbfs poll!hugetlbfs poll!
➢ Raise hand

➢ who is running any applications under
libhugetlbfs/hugetlbfs on his own production
laptop/workstation/server

➢ Even the OpenOffice used to prepare this
presentation is backed by some Transparent
Hugepage...

Copyright © 2009 Red Hat Inc.

Hypervisors and hugetlbfsHypervisors and hugetlbfs

Copyright © 2009 Red Hat Inc.

➢ Hugetlbfs is not good for KVM
➢ Unknown number of virtual machines
➢ Unknown amount of memory used by virtual

machines
➢ We want to use as many hugepages as

available to back guest physical memory
(especially with NPT/EPT)

➢ Virtual machines are started, shutdown,
migrated on demand by user or RHEV-M

➢ We don't want to alter behavior of boosted
virtual machines and we need overcommit
(and KSM) as usual

Transparent Hugepage designTransparent Hugepage design

Copyright © 2009 Red Hat Inc.

➢ Any Linux process will receive 2M pages
➢ if the mmap region is 2M naturally aligned

➢ Hugepages are only mapped by huge pmd
➢ When VM pressure triggers the hugepage are split

➢ Then they can be swapped out as 4k pages
➢ Tries to modify as little code as possible
➢ Entirely transparent to userland
➢ Already working with KVM with NPT/EPT and
shadow MMU

➢ Boost for page faults too and later the CPU
accesses memory faster

THP on anonymous memoryTHP on anonymous memory
➢ Current implementation only covers anonymous
memory (MAP_ANONYMOUS, i.e. malloc())

➢ KVM guest physical memory is incidentally
backed by anonymous memory ;)

➢ In the future database may require tmpfs to use
transparent hugepages too if they want to
swap (database main painful limit of hugetlbfs
is the lack of swapping)

Copyright © 2009 Red Hat Inc.

THP sysfs enabledTHP sysfs enabled
➢ /sys/kernel/mm/transparent_hugepage/enabled

➢ [always] madvise never
➢ Try to use THP on every big enough vma to

fit 2M pages
➢ always [madvise] never

➢ Only inside MAD_HUGEPAGE regions
➢ Applies to khugepaged too

➢ always madvise [never]
➢ Never use THP
➢ khugepaged quits

➢ Default selected at build time (enabled|madvise)
Copyright © 2009 Red Hat Inc.

THP kernel boot paramTHP kernel boot param
➢ To alter the default build time setting

➢ transparent_hugepage=always
➢ transparent_hugepage=madvise
➢ transparent_hugepage=never

➢ khugepaged isn't even started

Copyright © 2009 Red Hat Inc.

madvise(MADV_HUGEPAGE)madvise(MADV_HUGEPAGE)

Copyright © 2009 Red Hat Inc.

➢ To use hugepages only in specific regions
➢ To avoid altering the memory footprint
➢ Embedded systems want to use it

➢ Becomes effective when sysfs enabled is set
to“madvise”

➢ Better than libhugetlbfs
➢ swap
➢ full userland transparency
➢ no root privilege
➢ no library dependency

split_huge_pagesplit_huge_page

Copyright © 2009 Red Hat Inc.

➢ Low code impact
➢ Try to stay self contained

➢ If the code is not THP aware it's enough to call
split_huge_page() to make it THP aware

➢ then it's business as usual
➢ 1 liner trivial change vs >100 lines of non trivial
code

➢ Over time we need to minimize the use of
split_huge_page

➢ Like the big kernel lock (lock_kernel() going away
over time)

collapse_huge_pagecollapse_huge_page

Copyright © 2009 Red Hat Inc.

➢ “khugepaged” scans the virtual address space
➢ it collapses 512 4k pages in one 2M page
➢ it converts the 512 ptes to a huge pmd

➢ “pages_to_scan”
➢ “scan_sleep_millisecs” (can be set to 0)
➢ “alloc_sleep_millisecs”

➢ Throttle THP allocations in case of
fragmentation

Transparent Hugepages and KVMTransparent Hugepages and KVM
➢ We need THP in both guest and host

➢ So the CPU can use the 2M TLB for the guest
➢ This shows the power of KVM design

➢ same algorithm
➢ same code
➢ same kernel image

➢ For both KVM hypervisor and guest OS

Copyright © 2010 Red Hat Inc.

THP and kbuildTHP and kbuild
➢ GCC allocations are specially optimized (no glibc)

➢ Requires a small tweak to gcc
➢ Heavily parallel
➢ Heavily MMU intensive
➢ Worst case benchmark for THP, especially on bare
metal

➢ Small working set for each task
➢ It even includes `make clean` etc...

➢ Phenom X4 kbuild (no virt)
➢ 2.5% faster with THP

Copyright © 2010 Red Hat Inc.

gcc patch (trivial)gcc patch (trivial)
➢ @@ -450,6 +450,11 @@
➢ #define BITMAP_SIZE(Num_objects) \
➢ (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
➢
➢ +#ifdef __x86_64__
➢ +#define HPAGE_SIZE (2*1024*1024)
➢ +#define GGC_QUIRE_SIZE 512
➢ +#endif
➢ +
➢ /* Allocate pages in chunks of this size, to throttle calls to memory
➢ allocation routines. The first page is used, the rest go onto the
➢ free list. This cannot be larger than HOST_BITS_PER_INT for the
➢ @@ -654,6 +659,23 @@
➢ #ifdef HAVE_MMAP_ANON
➢ char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
➢ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +#ifdef HPAGE_SIZE
➢ + if (!(size & (HPAGE_SIZE-1)) &&
➢ + page != (char *) MAP_FAILED && (size_t) page & (HPAGE_SIZE-1)) {
➢ + char *old_page;
➢ + munmap(page, size);
➢ + page = (char *) mmap (pref, size + HPAGE_SIZE-1,
➢ + PROT_READ | PROT_WRITE,
➢ + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ + old_page = page;
➢ + page = (char *) (((size_t)page + HPAGE_SIZE-1)
➢ + & ~(HPAGE_SIZE-1));
➢ + if (old_page != page)
➢ + munmap(old_page, page-old_page);
➢ + if (page != old_page + HPAGE_SIZE-1)
➢ + munmap(page+size, old_page+HPAGE_SIZE-1-page);
➢ + }
➢ +#endif
➢Copyright © 2010 Red Hat Inc.

`perf` of kbuild (real life)`perf` of kbuild (real life)
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

====== build ======
#!/bin/bash
make clean >/dev/null; make -j32 >/dev/null
===================
THP always host (base result)
 Performance counter stats for './build' (3 runs):

 4420734012848 cycles (+- 0.007%)
 2692414418384 instructions # 0.609 IPC (+- 0.000%)
 696638665612 dTLB-loads (+- 0.001%)
 2982343758 dTLB-load-misses (+- 0.051%)

 83.855147696 seconds time elapsed (+- 0.058%)

THP never host (slowdown 4.06%)
 Performance counter stats for './build' (3 runs):
 4599325985460 cycles (+- 0.013%)
 2747874065083 instructions # 0.597 IPC (+- 0.000%)
 710631792376 dTLB-loads (+- 0.000%)
 4425816093 dTLB-load-misses (+- 0.039%)

 87.260443531 seconds time elapsed (+- 0.075%)

Copyright © 2010 Red Hat Inc.

kbuild bench (shorter is better)kbuild bench (shorter is better)

Copyright © 2010 Red Hat Inc.

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 50 100 150 200 250 300 350

198.33% slower

254.43% slower

260.15% slower

base

x seconds

24.81% slower

12.71% slower

5.67% slower

4.06% slower

qemu-kvm translate.oqemu-kvm translate.o
➢ Phenom X4 qemu-kvm translate.o build (no virt)

➢ 10% faster with THP
➢ this is a single gcc task running

➢ Not parallel
➢ no `make -jxx`
➢ no `make clean`

➢ Will follow the result on 24-way SMP

Copyright © 2010 Red Hat Inc.

`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

 40746051351 cycles (+- 5.597%)
 36394696366 instructions # 0.893 IPC (+- 0.007%)
 9602461977 dTLB-loads (+- 0.006%)
 45123574 dTLB-load-misses (+- 0.614%)

 13.920436128 seconds time elapsed (+- 5.600%)

THP never bare metal (9.10% slower)

 44492051930 cycles (+- 5.189%)
 36757849113 instructions # 0.826 IPC (+- 0.001%)
 9693482648 dTLB-loads (+- 0.004%)
 63675970 dTLB-load-misses (+- 0.598%)

 15.188315986 seconds time elapsed (+- 5.194%)

Copyright © 2010 Red Hat Inc.

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 2 4 6 8 10 12 14 16 18 20

seconds

kbuild “EPT off”kbuild “EPT off”

Copyright © 2010 Red Hat Inc.

9.10% slower

3.45% faster

15.84% slower

Base result

21.17% slower

0.11% slower

25.20% slower

28.48% slower

Hierarchical INTegrationHierarchical INTegration
➢ No THP related modification required
➢ Performance of scientific computing (Y)

➢ In function on the memory size (X)
➢ Show cache sizes etc..

➢ No MMU guest mangling (optimal for EPT off)

Copyright © 2009 Red Hat Inc.

Copyright © 2010 Red Hat Inc.

x bytes

y QUIPS
higher is better

Bare metal

Copyright © 2010 Red Hat Inc.

x bytes

y QUIPS
higher is better

EPT on

Copyright © 2010 Red Hat Inc.

x bytes

y QUIPS
higher is better

EPT off

Copyright © 2010 Red Hat Inc.

4-cpu 8-cpu 16-cpu

0

50

100

150

200

250

300

350

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

RHEL5.5 /6 SPECjbb Scaling Intel EX

RHEL5.4
RHEL6 B2
RHEL5 Huge
RHEL6 Huge
RHEL5.4 KVM
RHEL6 KVM
R6 vs R5
R6 KVM %effbo

ps
 (

k)
SPECjbbSPECjbb

hugetlbfs RHEL5 vs THP RHEL6hugetlbfs RHEL5 vs THP RHEL6

NOTE: no THP related modification to the JVM

Other resultsOther results
➢ KVM with THP on guest and host

➢ sometime faster than bare metal w/o THP
➢ “/usr/bin/sort -b 1200M /tmp/largerand” no virt

➢ 6% faster with THP (reported on lkml)
➢ Bare metal SPECJBB

➢ 18%?!? faster
➢ Vmware workstation SPECJBB with hugetlbfs in
guest

➢ 22% faster with THP (reported on lkml)

Copyright © 2010 Red Hat Inc.

Transparent Hugepages futureTransparent Hugepages future
➢ Enabled by default in RHEL6 (guest & host)
➢ Memory compaction included in 2.6.35

➢ Memory compaction motivated by THP
➢ Hopefully THP will be merged in 2.3.36-rc?
➢ KSM must learn about transparent hugepages
➢ Remove split_huge_page in mremap
➢ glibc?
➢ Possibly expand into tmpfs but hugetlbfs remains:

➢ some archs can't mix different page sizes
➢ Too big page_size isn't allocatable

Copyright © 2010 Red Hat Inc.

Q/AQ/A
➢ You're very welcome!

➢ Open http://git.kernel.org and then search “aa.git”
➢ http://git.kernel.org/?

p=linux/kernel/git/andrea/aa.git;a=shortlog

➢ First: git clone
git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git

➢ Later: git fetch; git checkout -f origin/master

Copyright © 2010 Red Hat Inc.

http://git.kernel.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

