Live Migration with SR-IOV Pass-through

Weidong Han <hanweidong@huawei.com>
August, 2015
Agenda

- Background
- Prototype
- Evaluation
- Summary
Background

- VM live migration is one of the most important feature of virtualization

- SR-IOV migration is required
 - NIC becomes more powerful: 10Gbit - > 40Gbit -> 100Gbit
Live Migration Algorithm

Source
- Connect
- Send Config
- Enable dirty page logging
- Send dirty pages iteratively
- Suspend
- Send last dirty pages
- Send VM state
- Disconnect
- Destroy VM

Destination
- Create VM
- Receive memory
- Restore VM state
- Unpause VM

Migration Time
VM Downtime
Challenges

- **How to migrate hardware state of the assigned device?**
 - Some registers of existing NICs are not writable

- **Bonding driver (VF and virtio-net) in VM**
 - Performance is not consistent
 - CPU consumption is not consistent
 - Hot plugging device increases downtime
Agenda

- Background
- Prototype
- Evaluation
- Summary
Ideally, Hardware can help

- I/O registers are readable and writable

- NIC Driver provides suspend and resume functions
 - Suspend: save hardware state
 - Resume: restore hardware state
Prototype Overview

- **Libvirt**
 - Migration check, prepare VM config

- **QEMU**
 - Implement savevm handlers (save and load) for assigned device
 - Use IProute2 command to notify SR-IOV driver for migration

- **Iproute2**
 - Add commands: migrate, cancelmigration, suspend, resume.

- **PF driver**
 - Notify VF driver for migration operations

- **VF driver**
 - DMA dirty page logging
 - Suspend and resume VF state

Note: based on a Huawei NIC prototype
Live Migration Algorithm with SR-IOV Pass-through

- **Source**
 - Connect
 - Send Config
 - Enable dirty page logging
 - Send dirty pages iteratively
 - Suspend
 - Send last dirty pages
 - Send VM state
 - Disconnect
 - Destroy VM

- **Destination**
 - Create VM
 - Receive memory
 - Receive memory
 - Restore VM state
 - Unpause VM

- Notify VF driver to track DMA dirty pages
- Configure destination VF
- Notify VF driver to suspend assigned VF; save state of assigned device in QEMU
- Load state of assigned VF in QEMU; Notify VF driver to resume VF
Iproute2 Migration Commands

- **Iproute2 can set VF state from kernel 3.12**
 - `#ip link set <pf> vf <vf_index> state auto|enable|disable`

- **Extend iproute2 VF state set commands**
 - `#ip link set <pf> vf <vf_index> state auto|enable|disable| migrate|cancelmigration|suspend|resume`

- **PF driver receives migration commands from iproute2, and passes them to VF driver via mailbox**
DMA Dirty Pages Logging

- Memory access by DMA can not be tracked by page table (e.g. EPT)

- VF driver uses dummy writes (read and write a byte at the same address) to make it dirty, then the memory can be tracked

- It almost doesn’t impact the performance
VF State Migration

- **VF suspend**
 - VF driver saves internal hardware states, and down interface
 - QEMU saves states of assigned VF via registered savevm handlers

- **VF resume**
 - QEMU restores states of assigned VF via registered savevm handlers
 - VF driver restores internal hardware states, up interface, and sends ARP.
Agenda

- Background
- Prototype
- Evaluation
- Summary
Test Environment

- **Host**
 - CPU: Huawei RH2288v2 (Xeon CPU E5-2620 v2@2.1Ghz)
 - NIC:
 - Huawei smart NIC prototype (for pass-through)
 - Broadcom Corporation NetXtreme BCM5719 Gigabit (VM data transfer for migration)
 - Storage: Huawei OceanSpace S5500T, through IPSAN

- **VM**
 - SLES11 SP3 64bit, 4 CPU, 4GB Memory
Results

- **VM migration time and downtime impact of our prototype is little.**

![VM Migration Time (ms)](image1)

![VM Downtime (ms)](image2)

Note: tested with default qemu max_downtime set, here is not the minimal downtime
Results (cont.)

- Normally the network downtime of VM with VF is a bit larger than VM with virtio-net
 - Additional time of VF suspend and resume via VF driver: suspend time is about 5ms, resume time is about 20ms (need optimization)
 - The network downtime with 5G workload case is big (need fixing)
Agenda

- Background
- Prototype
- Evaluation
- Summary
Summary

- Demonstrate a prototype of SR-IOV migration with hardware and driver help
- The evaluation results show it basically performs well
- Need improvements
- Hope more future NICs will be friendly to live migration!
Thank you

www.huawei.com