
qcow2 – why (not)?

Max Reitz <mreitz@redhat.com>

Kevin Wolf <kwolf@redhat.com>

KVM Forum 2015



Choosing between raw and qcow2

Traditional answer:
Performance? raw!
Features? qcow2!

But what if you need both?



A car analogy

Throwing out the seats gives you better
acceleration

Is it worth it?



A car analogy

Throwing out the seats gives you better
acceleration

Is it worth it?



Our goal

Keep the seats in!

Never try to get away without qcow2’s features



Part I

What are those features?



qcow2 features

Backing files

Internal snapshots

Zero clusters and partial allocation
(on all filesystems)

Compression



qcow2 metadata

Image is split into clusters
(default: 64 kB)

L2 tables map guest offsets to host offsets

Refcount blocks store allocation information



qcow2 metadata

For non-allocating I/O:
Only L2 tables needed



Part II

Preallocated images



What is tested?

Linux guest with fio
(120 s runtime per test/pattern; O DIRECT AIO)

6 GB images on SSD and HDD

Random/sequential 4k/1M blocks

qcow2: preallocation=metadata



SSD write performance

4k
random

1M
random

4k
seq

1M
seq

0

0.5

1

1.5

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



SSD read performance

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD write performance

4k
random

1M
random

4k
seq

1M
seq

0

0.5

1

1.5

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD read performance

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



So?

Looks good, right?



So?

Let’s increase the image size!



SSD 16 GB image write performance

4k
random

1M
random

4k
seq

1M
seq

0

0.5

1

1.5

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



SSD 16 GB image read performance

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD 32 GB image write performance

4k
random

1M
random

4k
seq

1M
seq

0

0.5

1

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD 32 GB image read performance

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



What happened?

Cache thrashing happened!

qcow2 caches L2 tables;
default cache size: 1 MB

This covers 8 GB of an image!



How to fix it?

1 DON’T PANIC – Don’t fix it.
Random accesses contained in an 8 GB area are fine,
no matter the image size

2 Increase the cache size
l2-cache-size runtime option
e.g. -drive

format=qcow2,l2-cache-size=4M,...

area size

cluster size÷ 8
=

area size

8192 B



SSD 16 GB image, 2 MB L2 cache, writing

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



SSD 16 GB image, 2 MB L2 cache, reading

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD 32 GB image, 4 MB L2 cache, writing

4k
random

1M
random

4k
seq

1M
seq

0

0.5

1

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



HDD 32 GB image, 4 MB L2 cache, reading

4k
random

1M
random

4k
seq

1M
seq

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
of

ra
w

IO
P

S

raw
qcow2



Results

No significant difference between raw and qcow2
for preallocated images

. . . As long as the L2 cache is large enough!

Without COW, everything is good!

But it is named qcow2 for a reason. . .



Part III

Cluster allocations



Cluster allocation

When is a new cluster allocated?

When writing to unallocated clusters
Previous content in backing file
Without backing file: all zero

For COW if existing cluster was shared
Internal snapshots
Compressed image



Copy on Write

Clusters
0 64k 128k 192k

Write request

Data written by guest
Copy on Write area

Cluster content must be completely valid (64k)

Guest may write with sector granularity (512b)

Partial write to newly allocated cluster
→ Rest must be filled with old data



Copy on Write

Clusters
0 64k 128k 192k

Write request

Data written by guest
Copy on Write area

COW cost is most expensive part of allocations

1 More I/O requests

2 More bytes transferred

3 More disk flushes (in some cases)



Copy on Write is slow (Problem 1)

Clusters
0 64k 128k 192k

Write request

Data written by guest
Copy on Write area

Naive implementation: 2 reads and 3 writes

About 30% performance hit vs. rewrite



Copy on Write is slow (Problem 1)

Clusters
0 64k 128k 192k

Write request

Data written by guest
Copy on Write area

Can combine writes into a single request
Fixes allocation performance without backing file
Doesn’t fix other cases: read is expensive



Copy on Write is slow (Problem 2)

Clusters
0 64k 128k 192k

Write request 1
Write request 2
Write request 3
Write request 4

Data written by guest
Copy on Write area
Unnecessary COW overhead

Most COW is unnecessary for sequential writes

If the COW area is overwritten anyway:
Avoid the copy in the first place



qcow2 data cache

Metadata already uses a cache for batching.
We can do the same for data!

Mark COW area invalid at first

Only read from backing file when accessed

Overwriting makes it valid → read avoided



Data cache performance

Seq. allocating writes (qcow2 with backing file)

8k rewrite 256k rewrite
0

50

100

150

200

MB/s

master
data cache
raw



Copy on Write is slow (Problem 3)

Internal COW (internal snapshots, compression):

1 Allocate new cluster:
Must increase refcount before mapping update

2 Drop reference for old cluster:
Must update mapping before refcount decrease

→ Need two (slow) disk flushes per allocation



Copy on Write is slow (Problem 3)

Possible solutions:

lazy refcounts=on

allows inconsistent refcounts

Implement journalling
allows updating both at the same time

→ No flushes needed
→ Performance fixed



Another solution: Avoid COW

Clusters
0 64k 128k 192k

Write request

Data written by guest
Stays unmodified (COW with large clusters)

Don’t optimize COW, avoid it
→ Use a small cluster size (= sector size)



Another solution: Avoid COW

Clusters
0 64k 128k 192k

Write request

Data written by guest
Stays unmodified (COW with large clusters)

But small cluster size isn’t practicable:

Large metadata (but no larger caches)

Potentially more fragmentation

→ No COW any more, but everything is slow



Subclusters

Clusters
Subclusters

0 64k 128k 192k

Write request

(Sub)cluster gets allocated
Stays unallocated

Split cluster size into two different sizes:

Granularity for the mapping (clusters, large)

Granularity of COW (subclusters, small)

Add subcluster bitmap to L2 table for COW status



Subclusters

Clusters
Subclusters

0 64k 128k 192k

Write request

(Sub)cluster gets allocated
Stays unallocated

Requires incompatible image format change

Can solve problems 1 and 2, but not 3



Status

Data cache:

Prototype patches exist (ready for 2.5 or 2.6?)

Subclusters:

Only theory, no code

Still useful with cache merged

Journalling:

Not anytime soon

Use lazy refcounts for internal COW



Questions?


	What are those features?
	Preallocated images
	Cluster allocations

