- redhat.

qcow?2 — why (not)?

Max Reitz <mreitz@redhat.com>
Kevin Wolf <kwolf@redhat.com>

KVM Forum 2015

Q redhat

Choosing between raw and qcow?2

Traditional answer:

Performance? raw!
Features? qcow?2!

But what if you need both?

Q redhat

A car analogy

Throwing out the seats gives you better
acceleration

Q redhat

A car analogy

Throwing out the seats gives you better
acceleration

Is it worth it?

Q redhat
Our goal

Keep the seats in!

Never try to get away without qcow?2's features

- redhat.

Part |
What are those features?

Q redhat

qgcow?2 features

Backing files
Internal snapshots

Zero clusters and partial allocation
(on all filesystems)

Compression

Q redhat

gcow2 metadata

Image is split into clusters

(default: 64 kB)

L2 tables map guest offsets to host offsets

Refcount blocks store allocation information

guest

X

host | H

L2

L2

RB

RB

L2

111111210 RB

Q redhat

gcow2 metadata

For non-allocating I/O:
Only L2 tables needed

guest X
L2

host | H |L2 L2|RB| |RB
111111210 RB

- redhat.

Part Il
Preallocated images

Qredhat
What is tested?

Linux guest with fio
(120 s runtime per test/pattern; 0 DIRECT AlO)

6 GB images on SSD and HDD
Random /sequential 4k/1M blocks

qcow2: preallocation=metadata

Q redhat

SSD write performance

15 | |loraw

n I0gcow?
o

o

I

o

ES

c

205/ |

O

]

L

O I T T T
& 1M & 1M

random random seq seq

Q redhat

SSD read performance

1.2

1
0.8
0.6
0.4

raction of raw IOPS

F
o
(S}

0

I

1o

loraw
lngcow?2

4k 1M 4k

random random seq

1M
seq

Q redhat

HDD write performance

15[| |loraw

n T lngcow?2
o

o

z 17 n JHL :

S

kS

[

2 05| |

O

T

i

O T T T T
4k 1M 4k 1M

random random seq seq

Q redhat

HDD read performance

»n 1.2
(ol
S 1
3 0.8
S
2 0.6
.©
204
©
0.2
0

dow ol i
& IM 4k IM
random random seq seq

liraw
lngcow?2

Q redhat

So?

Looks good, right?

Q redhat

So?

Let's increase the image size!

Qredhat
SSD 16 GB image write performance

loraw
ol | |lgcow?
O
: |
= |
s ol omoal
S
[
.Q
© 05| 1 1
L
O I I I I
4k 1M 4k 1M

random random seq seq

Q redhat

SSD 16 GB image read performance

raction of raw IOPS
(@») (@») (@) —
A O 0 = o

F
o
o N

I

"

fit

i

loraw
lngcow?2

4k 1M 4k 1M
random random seq seq

Q redhat

HDD 32 GB image write performance

Fraction of raw IOPS

| —

©
o1

0

liraw
lngcow?2

4k 1M 4k 1M
random random seq seq

Q redhat

HDD 32 GB image read performance

raction of raw IOPS
(@») (@»)] (e} —
B O 0 o

F
o
o N

T

TL

m

random

4k

1M
random

4k
seq

1M
seq

loraw
lngcow?2

Q redhat
What happened?

Cache thrashing happened!

gcow?2 caches L2 tables;
default cache size: 1 MB

This covers 8 GB of an image!

Q redhat

How to fix it?

DON'T PANIC - Don't fix it.

Random accesses contained in an 8 GB area are fine,
no matter the image size

Increase the cache size
12-cache-size runtime option

e.g. —drive
format=qcow2,12-cache-size=4M, ...

area size area size
cluster size = 8 8192 B

Qredhat
SSD 16 GB image, 2 MB L2 cache, writing

loraw

L E

raction of raw IOPS
o o o —
NN (@) (ee) | N
|

F
o
)

o

4k 1M 4k 1M
random random seq seq

Qredhat
SSD 16 GB image, 2 MB L2 cache, reading

121 N I]DraW

1%% Pf JHL 7 lngcow?2

0.8)
0.6)
0.4 2

raction of raw IOPS

F
o
S}

O I I I T
4k 1M 4k 1M

random random seq seq

Qredhat
HDD 32 GB image, 4 MB L2 cache, writing

Fraction of raw IOPS

[

©
o1

0

liraw
lngcow?2

4k 1M 4k 1M
random random seq seq

Q redhat

HDD 32 GB image, 4 MB L2 cache, reading

raction of raw IOPS
(@») (@»)] (e} —
B O 0 o

F
o
o N

i

it

I

0

random

4k

1M
random

4k
seq

1M
seq

loraw
lngcow?2

Q redhat

Results

No significant difference between raw and qcow?2
for preallocated images

... As long as the L2 cache is large enough!

Without COW, everything is good!
But it /s named gcow?2 for a reason. ..

- redhat.

Part 1l
Cluster allocations

Q redhat

Cluster allocation

When is a new cluster allocated?

When writing to unallocated clusters

Previous content in backing file
Without backing file: all zero

For COW if existing cluster was shared

Internal snapshots
Compressed image

Qredhat
Copy on Write

0 64k 128k 192k
Clusters [|

Write request B

B Data written by guest
B Copy on Write area

Cluster content must be completely valid (64k)
Guest may write with sector granularity (512b)

Partial write to newly allocated cluster
— Rest must be filled with old data

Qredhat
Copy on Write

0 64k 128k 192k
Clusters [|

Wite request B

B Data written by guest
B Copy on Write area

COW cost is most expensive part of allocations
More /O requests
More bytes transferred

More disk flushes (in some cases)

Q redhat

Copy on Write is slow (Problem 1)

0 64k 128k 192k
Clusters [I

Write request B

B Data written by guest
B Copy on Write area

Naive implementation: 2 reads and 3 writes

About 30% performance hit vs. rewrite

Q redhat

Copy on Write is slow (Problem 1)

0 64k 128k 192k
Clusters [| |

Write request T

B Data written by guest
B Copy on Write area

Can combine writes into a single request

Fixes allocation performance without backing file
Doesn't fix other cases: read is expensive

Qredhat
Copy on Write is slow (Problem 2)

0 64k 128k 192k
Clusters [I

Write request 1
Write request 2
Write request 3

Write request 4 I |

B Data written by guest
B Copy on Write area
Unnecessary COW overhead

Most COW is unnecessary for sequential writes

If the COW area is overwritten anyway:
Avoid the copy in the first place

Q redhat

gcow?2 data cache

Metadata already uses a cache for batching.
We can do the same for datal!

Mark COW area invalid at first
Only read from backing file when accessed

Overwriting makes it valid — read avoided

Q redhat

Data cache performance

Seq. allocating writes (qcow2 with backing file)

MB/s
200 [~— | |limaster
150 | | [lndata cache
raw
100 | .

Ll MW A

8k rewrite 256k rewrite

Qredhat
Copy on Write is slow (Problem 3)

Internal COW (internal snapshots, compression):
Allocate new cluster:
Must increase refcount before mapping update
Drop reference for old cluster:
Must update mapping before refcount decrease
— Need two (slow) disk flushes per allocation

Qredhat
Copy on Write is slow (Problem 3)

Possible solutions:
lazy refcounts=on
allows inconsistent refcounts
Implement journalling
allows updating both at the same time

— No flushes needed
— Performance fixed

Qredhat
Another solution: Avoid COW

Custers | T T TT T LI I I T LLIIIIIIL]

Write request

B Data written by guest
Stays unmodified (COW with large clusters)

Don't optimize COW, avoid it
— Use a small cluster size (= sector size)

Qredhat
Another solution: Avoid COW

Custers [T T TTTT T LTI I LI IIITIIL]

Write request

B Data written by guest
Stays unmodified (COW with large clusters)

But small cluster size isn't practicable:
Large metadata (but no larger caches)
Potentially more fragmentation

— No COW any more, but everything is slow

Q redhat

Subclusters

0 64k 128k 192k

Clusters
Subclusters

Write request

B (Sub)cluster gets allocated
tays unallocated

Split cluster size into two different sizes:
Granularity for the mapping (clusters, large)
Granularity of COW (subclusters, small)

Add subcluster bitmap to L2 table for COW status

Q redhat

Subclusters

0 64k 128k 192k

Clusters
Subclusters

Write request

B (Sub)cluster gets allocated
tays unallocated

Requires incompatible image format change

Can solve problems 1 and 2, but not 3

Q redhat
Status

Data cache:

Prototype patches exist (ready for 2.5 or 2.67)

Subclusters:
Only theory, no code

Still useful with cache merged

Journalling:
Not anytime soon
Use lazy refcounts for internal COW

- redhat.

Questions?

	What are those features?
	Preallocated images
	Cluster allocations

