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Q redhat

Choosing between raw and qcow?2

Traditional answer:

Performance? raw!
Features? qcow?2!

But what if you need both?



Q redhat

A car analogy

Throwing out the seats gives you better
acceleration



Q redhat

A car analogy

Throwing out the seats gives you better
acceleration

Is it worth it?



Q redhat
Our goal

Keep the seats in!

Never try to get away without qcow?2's features
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Part |
What are those features?



Q redhat

qgcow?2 features

Backing files
Internal snapshots

Zero clusters and partial allocation
(on all filesystems)

Compression



Q redhat

gcow2 metadata

Image is split into clusters

(default: 64 kB)

L2 tables map guest offsets to host offsets

Refcount blocks store allocation information
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Q redhat

gcow2 metadata

For non-allocating I/O:
Only L2 tables needed
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Preallocated images



Qredhat
What is tested?

Linux guest with fio
(120 s runtime per test/pattern; 0 DIRECT AlO)

6 GB images on SSD and HDD
Random /sequential 4k/1M blocks

qcow2: preallocation=metadata



Q redhat

SSD write performance
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Q redhat

SSD read performance
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Q redhat

HDD write performance
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Q redhat

HDD read performance
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Q redhat

So?

Looks good, right?



Q redhat

So?

Let's increase the image size!



Qredhat
SSD 16 GB image write performance
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Q redhat

SSD 16 GB image read performance

raction of raw IOPS
(@») (@») (@) —
A O 0 = o

F
o
o N

I

"

fit

i

loraw
lngcow?2

4k 1M 4k 1M
random random  seq seq




Q redhat

HDD 32 GB image write performance
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Q redhat

HDD 32 GB image read performance
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Q redhat
What happened?

Cache thrashing happened!

gcow?2 caches L2 tables;
default cache size: 1 MB

This covers 8 GB of an image!



Q redhat

How to fix it?

DON'T PANIC - Don't fix it.

Random accesses contained in an 8 GB area are fine,
no matter the image size

Increase the cache size
12-cache-size runtime option

e.g. —drive
format=qcow2,12-cache-size=4M, ...

area size area size
cluster size = 8 8192 B




Qredhat
SSD 16 GB image, 2 MB L2 cache, writing
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Qredhat
SSD 16 GB image, 2 MB L2 cache, reading
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Qredhat
HDD 32 GB image, 4 MB L2 cache, writing
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Q redhat

HDD 32 GB image, 4 MB L2 cache, reading

raction of raw IOPS
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Q redhat

Results

No significant difference between raw and qcow?2
for preallocated images

... As long as the L2 cache is large enough!

Without COW, everything is good!
But it /s named gcow?2 for a reason. ..
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Cluster allocations



Q redhat

Cluster allocation

When is a new cluster allocated?

When writing to unallocated clusters

Previous content in backing file
Without backing file: all zero

For COW if existing cluster was shared

Internal snapshots
Compressed image



Qredhat
Copy on Write

0 64k 128k 192k
Clusters [ |

Write request B

B Data written by guest
B Copy on Write area

Cluster content must be completely valid (64k)
Guest may write with sector granularity (512b)

Partial write to newly allocated cluster
— Rest must be filled with old data



Qredhat
Copy on Write

0 64k 128k 192k
Clusters [ |

Wite request B

B Data written by guest
B Copy on Write area

COW cost is most expensive part of allocations
More /O requests
More bytes transferred

More disk flushes (in some cases)



Q redhat

Copy on Write is slow (Problem 1)

0 64k 128k 192k
Clusters [ I

Write request B

B Data written by guest
B Copy on Write area

Naive implementation: 2 reads and 3 writes

About 30% performance hit vs. rewrite



Q redhat

Copy on Write is slow (Problem 1)

0 64k 128k 192k
Clusters [ | |

Write request T

B Data written by guest
B Copy on Write area

Can combine writes into a single request

Fixes allocation performance without backing file
Doesn't fix other cases: read is expensive



Qredhat
Copy on Write is slow (Problem 2)

0 64k 128k 192k
Clusters [ I

Write request 1
Write request 2
Write request 3

Write request 4 I |

B Data written by guest
B Copy on Write area
Unnecessary COW overhead

Most COW is unnecessary for sequential writes

If the COW area is overwritten anyway:
Avoid the copy in the first place



Q redhat

gcow?2 data cache

Metadata already uses a cache for batching.
We can do the same for datal!

Mark COW area invalid at first
Only read from backing file when accessed

Overwriting makes it valid — read avoided



Q redhat

Data cache performance

Seq. allocating writes (qcow2 with backing file)
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Qredhat
Copy on Write is slow (Problem 3)

Internal COW (internal snapshots, compression):
Allocate new cluster:
Must increase refcount before mapping update
Drop reference for old cluster:
Must update mapping before refcount decrease
— Need two (slow) disk flushes per allocation



Qredhat
Copy on Write is slow (Problem 3)

Possible solutions:
lazy refcounts=on
allows inconsistent refcounts
Implement journalling
allows updating both at the same time

— No flushes needed
— Performance fixed



Qredhat
Another solution: Avoid COW

Custers | T T TT T LI I I T LLIIIIIIL]

Write request

B Data written by guest
Stays unmodified (COW with large clusters)

Don't optimize COW, avoid it
— Use a small cluster size (= sector size)



Qredhat
Another solution: Avoid COW

Custers [T T TTTT T LTI I LI IIITIIL]

Write request

B Data written by guest
Stays unmodified (COW with large clusters)

But small cluster size isn't practicable:
Large metadata (but no larger caches)
Potentially more fragmentation

— No COW any more, but everything is slow



Q redhat

Subclusters

0 64k 128k 192k

Clusters
Subclusters

Write request

B (Sub)cluster gets allocated
tays unallocated

Split cluster size into two different sizes:
Granularity for the mapping (clusters, large)
Granularity of COW (subclusters, small)

Add subcluster bitmap to L2 table for COW status



Q redhat

Subclusters

0 64k 128k 192k

Clusters
Subclusters

Write request

B (Sub)cluster gets allocated
tays unallocated

Requires incompatible image format change

Can solve problems 1 and 2, but not 3



Q redhat
Status

Data cache:

Prototype patches exist (ready for 2.5 or 2.67)

Subclusters:
Only theory, no code

Still useful with cache merged

Journalling:
Not anytime soon
Use lazy refcounts for internal COW
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Questions?
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