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Agenda

➔Introduction to the software-controlled TLB

•Virtualizing the software-controlled TLB
● Replacement algorithm
● Avoiding TLB misses

●Summary
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x86

x86 Paging

CR3

...

...
...

TLB

Hardware pagetable walker
– Number of mappings limited 

only by available memory
• 2-4MB to represent 1GB 
address space

– Die space, power, and heat 
issues

– Slow; need additional TLB
core memory
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Software-controlled TLB

PPC440

TLB

No hardware pagetable walker
– Avoid die costs

– No memory required

TLB
– Limited number of simultaneous 

mappings (e.g. 64)
• Large pages very important

– Not in TLB? Invoke software TLB 
miss handler
• Critical performance path

core memory
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3

TLB Misses

General-purpose operating 
systems need more than 64 
mappings
– Heavy TLB thrashing

– Still need software-only “page 
table” structures

Fast path
– Miss in TLB, hit in page tables

– Handler walks page tables in 
assembly

Slow path
– Miss in TLB, miss in page 

tables
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Agenda

•Introduction to the software-controlled TLB
➔Virtualizing the software-controlled TLB

● Replacement algorithm
● Avoiding TLB misses

●Summary
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The Shadow TLB

(Virtual) TLB holds guest 
physical addresses
– Shadow TLB holds host 

physical addresses

– Only 64 host pages at a time 
must be pinned

Some guest mappings will be 
omitted from the shadow
– MMIO mappings

– Mappings we couldn't fit 
because we stole a TLB entry

Emulate large guest pages 
with multiple small host pages
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Shadow TLB Replacement Policy

Single 256MB mapping 
covers 440 guest kernel
– Could fill entire shadow TLB 

with 4KB mappings

Break correlation between 
guest and host TLB entry 
indexes
– Assumes full associativity

– But we must propagate guest 
TLB changes to all 
corresponding shadow entries!

Host implements its own TLB 
replacement policy
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Shadow TLB Replacement Observations

Currently, Linux (guest) TLB replacement is round-robin
– We can start there too

The instruction pointer and stack pointer are heavily used 
virtual addresses
– If our policy selects the shadow entry mapping either, let's try again

– Stack pointer is an ABI convention, not an architected register
• Luckily, most (all?) PowerPC ABIs use GPR1 as the stack pointer
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Shadow TLB Misses

Fast path: shadow TLB miss, guest TLB hit
– KVM opaquely handles fault without guest involvement

Slow path: shadow TLB miss, guest TLB miss, guest page 
table hit
– Must invoke guest to fill its TLB

– But we'd rather not because this requires many context switches

– Remember how this is the most performance-critical path?

(Slowest path: shadow TLB miss, guest TLB miss, guest page 
table miss)
– Nothing we can do here
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Shadow TLB Misses: Context Switches

Context switches
1.Shadow and guest TLB miss

2.Host invokes guest handler*

3.Guest inserts new entry (hcall 
or instruction emulation*)

4.Host returns from TLB insert

5.Guest returns to host

6.Host returns to interrupted 
code

* 440-specific problem: these 
may require multiple traps

guest
kernel

guest
code

host

1.

2.

3.

5.6.

4.
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Shadow TLB Miss Performance Mitigation

Have host walk guest page tables
– Brittle host code

– These are software constructs, and very kernel-specific

Define a new “hardware” page table format (and have host 
walk that)
– Invasive to guest memory management code

Advertise a larger TLB than hardware really has
– After all, the goal is simply for host visibility into more guest mappings

– Probably requires slight guest modification (guest TLB size may be a 
build-time constant)

– Will want “TLB invalidate all” instruction/hypercall too (not all 
processors have this)
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Agenda

•Introduction to the software-controlled TLB

•Virtualizing the software-controlled TLB
● Replacement algorithm
● Avoiding TLB misses

➔Summary
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Summary

The TLB miss interrupt handler is a critical performance path 
on systems with a software-controlled TLBs

A shadow TLB is analogous to and simpler than shadow page 
tables

Shadow TLBs exacerbate the TLB thrashing performance 
problem by increasing the number of context switches
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