
Hollis Blanchard
IBM Linux Technology Center

Shadow TLB Management on PowerPC 440
KVM Forum 2008



2IBM Linux Technology Center

Agenda

➔Introduction to the software-controlled TLB

•Virtualizing the software-controlled TLB
● Replacement algorithm
● Avoiding TLB misses

●Summary



3IBM Linux Technology Center

x86

x86 Paging

CR3

...

...
...

TLB

Hardware pagetable walker
– Number of mappings limited 

only by available memory
• 2-4MB to represent 1GB 
address space

– Die space, power, and heat 
issues

– Slow; need additional TLB
core memory



4IBM Linux Technology Center

Software-controlled TLB

PPC440

TLB

No hardware pagetable walker
– Avoid die costs

– No memory required

TLB
– Limited number of simultaneous 

mappings (e.g. 64)
• Large pages very important

– Not in TLB? Invoke software TLB 
miss handler
• Critical performance path

core memory



5IBM Linux Technology Center

3

TLB Misses

General-purpose operating 
systems need more than 64 
mappings
– Heavy TLB thrashing

– Still need software-only “page 
table” structures

Fast path
– Miss in TLB, hit in page tables

– Handler walks page tables in 
assembly

Slow path
– Miss in TLB, miss in page 

tables

PPC440

0
:
:

64

...

7

...
...
12

current->
thread.pgdir

3

fault



6IBM Linux Technology Center

Agenda

•Introduction to the software-controlled TLB
➔Virtualizing the software-controlled TLB

● Replacement algorithm
● Avoiding TLB misses

●Summary



7IBM Linux Technology Center

The Shadow TLB

(Virtual) TLB holds guest 
physical addresses
– Shadow TLB holds host 

physical addresses

– Only 64 host pages at a time 
must be pinned

Some guest mappings will be 
omitted from the shadow
– MMIO mappings

– Mappings we couldn't fit 
because we stole a TLB entry

Emulate large guest pages 
with multiple small host pages

vcpu

0
:
:

64

...

7

...
...
12

current->
thread.pgdir

3

PPC440

0
:

63
KVM



8IBM Linux Technology Center

Shadow TLB Replacement Policy

Single 256MB mapping 
covers 440 guest kernel
– Could fill entire shadow TLB 

with 4KB mappings

Break correlation between 
guest and host TLB entry 
indexes
– Assumes full associativity

– But we must propagate guest 
TLB changes to all 
corresponding shadow entries!

Host implements its own TLB 
replacement policy

4
:
:

64 KVM

3

1
2

0

4
:

63

3

1
2

0

4
:
:

64 KVM

3

1
2

0

4
:

63

3

1
2

0

?

shadowguest



9IBM Linux Technology Center

Shadow TLB Replacement Observations

Currently, Linux (guest) TLB replacement is round-robin
– We can start there too

The instruction pointer and stack pointer are heavily used 
virtual addresses
– If our policy selects the shadow entry mapping either, let's try again

– Stack pointer is an ABI convention, not an architected register
• Luckily, most (all?) PowerPC ABIs use GPR1 as the stack pointer



10IBM Linux Technology Center

Shadow TLB Misses

Fast path: shadow TLB miss, guest TLB hit
– KVM opaquely handles fault without guest involvement

Slow path: shadow TLB miss, guest TLB miss, guest page 
table hit
– Must invoke guest to fill its TLB

– But we'd rather not because this requires many context switches

– Remember how this is the most performance-critical path?

(Slowest path: shadow TLB miss, guest TLB miss, guest page 
table miss)
– Nothing we can do here



11IBM Linux Technology Center

Shadow TLB Misses: Context Switches

Context switches
1.Shadow and guest TLB miss

2.Host invokes guest handler*

3.Guest inserts new entry (hcall 
or instruction emulation*)

4.Host returns from TLB insert

5.Guest returns to host

6.Host returns to interrupted 
code

* 440-specific problem: these 
may require multiple traps

guest
kernel

guest
code

host

1.

2.

3.

5.6.

4.



12IBM Linux Technology Center

Shadow TLB Miss Performance Mitigation

Have host walk guest page tables
– Brittle host code

– These are software constructs, and very kernel-specific

Define a new “hardware” page table format (and have host 
walk that)
– Invasive to guest memory management code

Advertise a larger TLB than hardware really has
– After all, the goal is simply for host visibility into more guest mappings

– Probably requires slight guest modification (guest TLB size may be a 
build-time constant)

– Will want “TLB invalidate all” instruction/hypercall too (not all 
processors have this)



13IBM Linux Technology Center

Agenda

•Introduction to the software-controlled TLB

•Virtualizing the software-controlled TLB
● Replacement algorithm
● Avoiding TLB misses

➔Summary



14IBM Linux Technology Center

Summary

The TLB miss interrupt handler is a critical performance path 
on systems with a software-controlled TLBs

A shadow TLB is analogous to and simpler than shadow page 
tables

Shadow TLBs exacerbate the TLB thrashing performance 
problem by increasing the number of context switches


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

