
Nested EPT to Make Nested VMX Faster

Red Hat

Author Gleb Natapov

October 21, 2013



Section 1
Background



Background 3

Shadow Paging



Background 4

Shadow Paging



Background 5

Shadow Paging



Background 6

Shadow Paging



Background 7

Shadow Paging



Background 8

Shadow Paging



Background 9

Shadow Paging (Cont.)

Slow!

CR3 change traps to hypervisor

Page table modification by a guest traps to hypervisor

New address space creation (fork) requires new shadow page
table to be created



Background 10

Shadow Paging (Cont.)

What actually happens

GVA

⇓
GPA

⇓
HPA


shadow−−−−→


GVA

⇓
HPA



Background 11

EPT Saves the Day

Two level paging in HW so shadow is not needed!

GVA

⇓ Guest Page Table

GPA

⇓ Extended Page Table

HPA



Background 12

EPT Saves the Day (Cont.)

Guest manages its address space by itself



Section 2
What About Nested



What About Nested 14

Nested Guest is Running

Three levels of address translation!

nGVA

⇓
nGPA

⇓
GPA

⇓
HPA



What About Nested 15

Nested Guest is Running (Cont.)

But HW has only two levels!



What About Nested 16

Nested Guest is Running (Cont.)

Something has to be shadowed



What About Nested 17

Shadow on EPT

What actually happens

nGVA

⇓
nGPA

⇓
GPA


shadow−−−−→


nGVA

⇓
GPA

⇓
HPA



What About Nested 18

Shadow on EPT (Cont.)

Slow for all the same reasons as regular shadowing
Plus each L2’s #PF and CR3 access traps to L0
and forwarded to L1



What About Nested 19

Shadow on EPT (Cont.)

Slow for all the same reasons as regular shadowing
Plus each L2’s #PF and CR3 access traps to L0
and forwarded to L1



What About Nested 20

Nested EPT

Key observation

Guests are created/destroyed much less frequently than processes



What About Nested 21

Nested EPT (Cont.)

Why not shadow nGPA to HPA translation instead?



What About Nested 22

Nested EPT (Cont.)

What actually happens

nGVA

⇓
nGPA

⇓
GPA

⇓
HPA


shadow−−−−→


nGPA

⇓
HPA



What About Nested 23

Nested EPT (Cont.)

Nested guest manages its address space by itself



Section 3
Implementation



Implementation 25

Good

KVM already has shadow paging code



Implementation 26

Good (Cont.)

KVM shadow code understands all guest’s paging modes

32-bit Paging

PAE Paging

IA-32e Paging



Implementation 27

32-bit Paging

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of page directory1 Ignored
P
C
D

PW
T Ignored CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be 0)

Bits 39:32 of 
address2

P
A
T

Ignored G 1 D A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

PW
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present



Implementation 28

PAE Paging

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Ignored2 Address of page-directory-pointer table Ignored CR3

Reserved3 Address of page directory Ign. Rsvd.
P
C
D

P
W
T

Rs
vd 1 PDPTE:

present

Ignored 0
PDTPE:

not
present

X
D
4

Reserved Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Reserved Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Reserved Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present



Implementation 29

IA-32e Paging
6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2 Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

Ignored Rsvd. Address of page-directory-pointer table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Ignored Rsvd. Address of
1GB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Ignored Rsvd. Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Ignored Rsvd. Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present



Implementation 30

What is Common?

bit 0 - Present

bit 1 - R/W

bit 2 - User

bit 5 - Accessed

bit 6 - Dirty

bit 7 - Large Page

bit 63 - Execute Disabled (PAE & IA-32e)



Implementation 31

What is Different?

PTE size (32bit vs 64bit)

Number of page table levels



Implementation 32

How Differences are Handled

Shadow paging code is a template

All differences are template parameters

Template code is compiled for each paging mode

vcpu->mmu is initialized according to current guest mode



Implementation 33

Bad

EPT page table format is very different



Implementation 34

EPT Page Table Format
6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Rsvd.
A
/
D

EPT
PWL–

1

EPT
PS
MT

EPTP2

Ignored Rsvd. Address of EPT page-directory-pointer table Ign. A Reserved X W R PML4E:
present

S
V
E3

Ignored 0 0 0
PML4E:

not
present

S
V
E

Ignored Rsvd.
Physical 

address of
1GB page

Reserved Ign. D A 1

I
P
A
T

EPT
MT X W R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ign. A 0 Rsvd. X W R
PDPTE:
page

directory

S
V
E

Ignored 0 0 0
PDTPE:

not
present

S
V
E

Ignored Rsvd. Physical address
of 2MB page Reserved Ign. D A 1

I
P
A
T

EPT
MT X W R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ign. A 0 Rsvd. X W R
PDE:
page
table

S
V
E

Ignored 0 0 0
PDE:
not

present

S
V
E

Ignored Rsvd. Physical address of 4KB page Ign. D A
I
g
n

I
P
A
T

EPT
MT X W R

PTE:
4KB
page

S
V
E

Ignored 0 0 0
PTE:
not

present



Implementation 35

Find the Differences

Bit Regular Paging EPT

0 present readable
1 writable writable
2 user executable
5 accessed memory type
6 dirty ignore pat
7 large page large page
8 ignored accessed
9 ignored dirty
63 XD Suppress #VE



Implementation 36

Step One: Make PTE handling parameterizable

Reserved bits

Present

Dirty

Accessed

Permission



Implementation 37

Step Two: Teaching Shadow About EPT

arch/x86/kvm/mmu.c | 5 +++++

arch/x86/kvm/paging_tmpl.h | 37 ++++++++++++++++++++++++++++++++++++-

2 files changed, 41 insertions(+), 1 deletion(-)



Implementation 38

Step Three: Switch to Shadow EPT

On nested guest entry switch vcpu->mmu to EPT



Implementation 39

But...

KVM uses vcpu->mmu for two purposes:

1 Virtualize guests memory

2 Translate GVA to GPA during instruction
emulation



Implementation 40

But... (Cont.)

What if L0 wants to emulate L2’s instruction?
It needs to translate an address from nGVA to GPA
EPT vcpu->mmu translates from nGPA to GPA



Implementation 41

But... (Cont.)

What if L0 wants to emulate L2’s instruction?
It needs to translate an address from nGVA to GPA
EPT vcpu->mmu translates from nGPA to GPA



Implementation 42

But... (Cont.)

What if L0 wants to emulate L2’s instruction?
It needs to translate an address from nGVA to GPA
EPT vcpu->mmu translates from nGPA to GPA



Implementation 43

Solution

Nested MMU
Pointed to by vcpu->nested mmu

Translates nested guest’s address twice:

1 nGVA→nGPA
2 nGPA→GPA



Implementation 44

Numbers

Kernel compile

Shadow-on-EPT: 33m22s
Nested EPT: 9m46s



The end.
Thanks for listening.


	Background
	What About Nested
	Implementation

