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Shadow Paging (Cont.)

Slow!

CR3 change traps to hypervisor

Page table modification by a guest traps to hypervisor

New address space creation (fork) requires new shadow page
table to be created
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Shadow Paging (Cont.)

What actually happens

GVA

⇓
GPA

⇓
HPA


shadow−−−−→


GVA

⇓
HPA
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EPT Saves the Day

Two level paging in HW so shadow is not needed!

GVA

⇓ Guest Page Table

GPA

⇓ Extended Page Table

HPA
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EPT Saves the Day (Cont.)

Guest manages its address space by itself
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Nested Guest is Running

Three levels of address translation!

nGVA

⇓
nGPA

⇓
GPA

⇓
HPA
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Nested Guest is Running (Cont.)

But HW has only two levels!
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Nested Guest is Running (Cont.)

Something has to be shadowed
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Shadow on EPT

What actually happens

nGVA

⇓
nGPA

⇓
GPA


shadow−−−−→


nGVA

⇓
GPA

⇓
HPA
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Shadow on EPT (Cont.)

Slow for all the same reasons as regular shadowing
Plus each L2’s #PF and CR3 access traps to L0
and forwarded to L1
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Nested EPT

Key observation

Guests are created/destroyed much less frequently than processes
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Nested EPT (Cont.)

Why not shadow nGPA to HPA translation instead?



What About Nested 22

Nested EPT (Cont.)

What actually happens

nGVA

⇓
nGPA

⇓
GPA

⇓
HPA


shadow−−−−→


nGPA

⇓
HPA
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Nested EPT (Cont.)

Nested guest manages its address space by itself
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Good

KVM already has shadow paging code
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Good (Cont.)

KVM shadow code understands all guest’s paging modes

32-bit Paging

PAE Paging

IA-32e Paging
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32-bit Paging
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PAE Paging
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IA-32e Paging
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What is Common?

bit 0 - Present

bit 1 - R/W

bit 2 - User

bit 5 - Accessed

bit 6 - Dirty

bit 7 - Large Page

bit 63 - Execute Disabled (PAE & IA-32e)
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What is Different?

PTE size (32bit vs 64bit)

Number of page table levels
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How Differences are Handled

Shadow paging code is a template

All differences are template parameters

Template code is compiled for each paging mode

vcpu->mmu is initialized according to current guest mode
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Bad

EPT page table format is very different
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EPT Page Table Format
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Find the Differences

Bit Regular Paging EPT

0 present readable
1 writable writable
2 user executable
5 accessed memory type
6 dirty ignore pat
7 large page large page
8 ignored accessed
9 ignored dirty
63 XD Suppress #VE
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Step One: Make PTE handling parameterizable

Reserved bits

Present

Dirty

Accessed

Permission
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Step Two: Teaching Shadow About EPT

arch/x86/kvm/mmu.c | 5 +++++

arch/x86/kvm/paging_tmpl.h | 37 ++++++++++++++++++++++++++++++++++++-

2 files changed, 41 insertions(+), 1 deletion(-)
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Step Three: Switch to Shadow EPT

On nested guest entry switch vcpu->mmu to EPT
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But...

KVM uses vcpu->mmu for two purposes:

1 Virtualize guests memory

2 Translate GVA to GPA during instruction
emulation
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But... (Cont.)

What if L0 wants to emulate L2’s instruction?
It needs to translate an address from nGVA to GPA
EPT vcpu->mmu translates from nGPA to GPA
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But... (Cont.)

What if L0 wants to emulate L2’s instruction?
It needs to translate an address from nGVA to GPA
EPT vcpu->mmu translates from nGPA to GPA
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Solution

Nested MMU
Pointed to by vcpu->nested mmu

Translates nested guest’s address twice:

1 nGVA→nGPA
2 nGPA→GPA
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Numbers

Kernel compile

Shadow-on-EPT: 33m22s
Nested EPT: 9m46s



The end.
Thanks for listening.
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