
1

KVM as The NFV Hypervisor

Jun Nakajima

Mesut Ergin, Yunhong Jiang, Krishna Murthy, James Tsai,
Wei Wang, Huawei Xie, Yang Zhang

Contributors:

2

Legal Disclaimer
�  INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR
LIFE SUSTAINING APPLICATIONS.

�  Intel may make changes to specifications and product descriptions at any time, without notice.

�  All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without
notice.

�  Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

�  Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

�  *Other names and brands may be claimed as the property of others.

�  Copyright © 2015 Intel Corporation.

3

Agenda

•  KVM Enhancements for NFV at OPNFV
•  Deterministic Execution and Minimal Latency
•  Inter-VM communication: vhost-user-shmem

4

Software

IT

Virtualization

Standard
High Volume
Servers

ETSI’s Vision
European Telecommunications
Standards Institute

5

Architecture Framework

KVM, Containers, …

NFV Infrastructure

Virtual Network Function

6

KVM is Crucial to
OPNFV

Upstream Projects:

…

7

Project: NFV Hypervisors-KVM

1.  Minimal Interrupt latency variation for data plane VNFs (Virtual Network
Function)

2.  Inter-VM Communication
3.  Fast Live Migration

Developers from:

https://wiki.opnfv.org/nfv-kvm

8

Deterministic Execution and Minimal
Latency

9

User-Level

Linux Kernel

Hardware
NIC

core

KVM Modules

User-Level

core

NIC

core core

Guest (VNF)
Causes of Latency

Variation

Intr_Handler

Asynchronous Events

Interrupts, VM
Exits, Cache/TLB

Misses

Software

Spin Locks, Loops,
Scheduling, Exit to

user-level

Hardware/Firmware

SMI, Power
Management, NIC

10

User-Level

Linux Kernel

Hardware
NIC

core

KVM Modules

User-Level

core

NIC

core core

Guest
Solutions

PREEMPT-RT
Configuration

Intr_Handler

Excusive/Static Allocation

Soft “Partitioning”,
CPU Binding, Huge

Pages

Software

PREEMPT-RT Linux,
Code inspection,

testing/measurements

Hardware Technologies

Cache Allocation
Technology, Advanced

VT features

11

Cache Allocation Technology

DRAM

Last Level Cache

Core
App

Core
App

Core
App

Core
App

CAT is supported on the following 6 SKUs for Intel Xeon processor E5 v3 family: E5-2658 v3, E5-2658A v3, E5-2648L v3,
E5-2628L v3, E5-2618L v3, and E5-2608L v3 and Intel(R) Xeon(R) processor D family.

•  Last Level Cache partitioning
mechanism enabling the separation
of an application

•  VMs can be isolated to increase
determinism

•  Having limited cache is still better
than “unlimited cache and noisy
neighbors”

12

Latency Data 1: Cyclictest

Cyclic Test in Guest: Latency (in µS)
• Min: 7
• Avg: 9
• Max: 16

RT Linux Guest
on KVM

Latency (µs)

Host: Linux with RT patches

000007 000003
000008 11757562
000009 67812652
000010 159222
000011 069100
000012 011004
000013 000379
000014 000207
000015 000049
000016 000005

Latency

99.69%
 (Total #: 79,810,183)

Occurrences

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 2 4 6 8 10 12 14 16 18 20 22

Histogram

13

Latency Data 2: Latency from Periodic External
Interrupts

Linux Kernel

Hardware

KVM Modules

Intr_Hander

PCIe
Device

Interrupt (MSI)

Device
Driver

Periodic (1ms)

Latency from periodic external interrupt:
• Time delta from interrupt occurrence to invocation

of interrupt handler in guest (unit: in µS)
Min: 3.98
Avg: 4.42
Max: 9.10

Expecting even better results with:
• Posted Interrupts and
• CAT (Cache Allocation Technology)

14

Inter-VM Communication

15
15

Linux Kernel

Hardware
NIC

corecore

NIC

core core

VM1

Shared Memory (1GB pages)

KVM Modules

Kernel

Network stack

Process

VM2

Kernel

Network stack

Process

vSwitch

TX, RX
queues

TX, RX
queues

in-kernel
vSwitch TAP

VM3

Kernel

Network stack

Process

TAP

Specific API

Networking API

Communication
Models

•  Shared memory, etc.
•  Directly used by

particular Processes

•  Use vSwitch in
hypervisor

•  Generic

API API

vhost-user

Process

Process

TX, RX
queues

TX, RX
queues

Network stack

Network stack

Network stack

KVM Modules

Process

16
16

Linux Kernel

Hardware
NIC

corecore

NIC

core core

VM1

Shared Memory (1GB pages)

KVM Modules

Kernel

Network stack

Process

VM2

Kernel

Network stack

Process

vSwitch

TX, RX
queues

TX, RX
queues

in-kernel
vSwitch TAP

VM3

Kernel

Network stack

Process

TAP

Specific API

Networking API

Fast Paths:
Inter-VM

Communication
In-VM
Switch

•  Access Destination
VM memory

•  Use In-VM Switch

•  Need to improve
security when using
shared memory

Shared
Memory

sync

17

Implementing Inter-VM
Communication: vhost-user-shmem

18
18

Goals
VM1

virtio-net

vSwitch (e.g. OVS
with DPDK-netdev)

In-VM Switch

VM2

T
X

R
X

virtio-net

Simple Flow
Table (inc.

MPLS)

If (in-VM Switch is present)
Go to Fast Path

NIC

In-VM
Switch

VM3

T
X

R
X

virtio-net

In-VM
Switch

Inter-VM data
transfer

API Libraries

ProcessProcess•  Add fast-paths in VMs as
optimized inter-VM
communication

•  Maintain consistent flow
table entries in VMs

•  Enable protected access
to the destination VM or
shared memory

•  Open the Window when
needed

•  Close it immediately when
done

Flow
Table

Entries
Shared Memory

vhost-user

vSwitch
(e.g. OVS-dpdk,
Snabb Switch)

VM1 VM2 VM3

virtio-net virtio-net

In-VM
Switch

NIC

virtio-net

19
19

Clean Design Objectives

Extend vhost-user as transport mechanism
over shared memory/virtqueues:
•  Deliver packets to another guest’s virtio device/

virtqueue directly
•  Provide memory mapping (GPAs), protected

access, destination addressing

Build innovative high-performance
networking applications, e.g:
1.  In-VM switch as a fast cached-datapath for the full-

blown virtual switch
2.  Lightweight and fast Service Function Chaining
3.  Next big NFV app you are developing

In-VM switch, SFC
or…

vhost-user-shmem

TR
A

N
S

P
O

R
T

A
P

P
s

20

vhost-user Server

QEMU 1

VM1

QEMU n

VM n

Send mem infoSend mem info

VM 1 Memory

 VM 2 Memory

VM n Memory

fd0, gpa0, len0
fd1, gpa1, len1

...
vring address info

fd0, gpa0, len0
fd1, gpa1, len1

...
vring address info

...

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

...

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

Shared Memory Using
vhost-user Server

vhost-user server (backend) has
sufficient info and capability to
host shared memory:
•  Gather mem info to access

virtuques from vhost-user clients
(QEMUs)

•  It can allocate its own memory for
sharing purposes

•  E.g. large pages shared by guests
(like ivshmem)

Server (backend)

Clients Clients vhost-user Protocol

vSwitch

VM1 VM2 VMn

21

vhost-user Server

QEMU 1

VM1

QEMU n

VM n

Send mem infoSend mem info

VM 1 Memory

 VM 2 Memory

VM n Memory

fd0, gpa0, len0
fd1, gpa1, len1

...
vring address info

fd0, gpa0, len0
fd1, gpa1, len1

...
vring address info

...

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

...

fd0, gpa0, len0

fd1, gpa1, len1

...

vring address info

VM 2, ...

...

VM 2, ...

mem info mem info

Extending it for Inter-VM
Communication

•  vhost-user server (backend)
becomes a client

•  Send mem info to QEMUs
•  QEMU extends memory regions

•  Allows vhost-user clients to access
their virtqueues each other

•  Provides vhost-user clients with
shared memory

Server (backend)

Clients Clients vhost-user Protocol Server (backend)

Clients

VM1 VM2 VMn

22

QEMU

vhost-user-shmem (vushmem)
server

VM1

VM1

socket

vhost-user-shmem
support vhost-user-

shmem Protocol
vhost-user-

shmem Protocol

fastpath code

vushmem control
structure

vushmem
PCI detection

QEMU

VM2

BAR

fastpath code

vushmem control
structure

vushmem PCI
Device model

vhost-user-shmem
support

vushmem PCI
Device model

interrupt (MSI)
vushmem

PCI detection

vushmem client
vushmem client

1. vhost-user from VM2

2. vhost-user for VM2
(multicast)

vhost-user socket

vushmem control
structure

shared shared

Simple Example: VM1 and VM2
vSwitch

1

2 3

VM1
VM2

VM2

VM2

PCI BAR

23

Linux Kernel

Hardware
NIC

core

VM2

core

NIC

core core

VM3VM1

KVM Modules

1 2

1 2 1 2

TX()
VMFUNC VMFUNC VMFUNC

RX() RX()

•  Extends memory to access fast-
path channel or destination VM

•  VMFUNC instruction in VM w/o VM
exit

•  #0 (EAX): Switches EPT
(Extend Page Table) Pointers

•  Alternate EPT has additional
translation

Adding Protected Access

Mapped by Default EPT
(Extend Page Table)

Guest Memory

24

QEMU

VM1

BAR

vhost-user-shmem
support

VM2, VM3, ...

fastpath code

vushmem control
structure

vushmem
PCI detection

vushmem PCI
Device model

interrupt (MSI)

VM2, VM3, ...

VM2, VM3, ...

QEMU

VM1

BAR

vhost-user-shmem
support

VM2, VM3, ...

fastpath code

vushmem control
structure

vushmem
PCI detection

vushmem PCI
Device model

interrupt (MSI)

VM2, VM3, ...

VM2, VM3, ...

QEMU

VM1

BAR

vhost-user-shmem
support

VM2, VM3, ...

fastpath code

vushmem control
structure

vushmem
PCI detection

vushmem PCI
Device model

interrupt (MSI)

VM2, VM3, ...

VM2, VM3, ...
Adding EPT Alternate View

Default EPT

Alt. EPT

No Access

OK

VM1

VM1

Fast Pass Code (Protected Code):
•  Upon VMFUNC #0, EPT View is

changed
•  Access other shared memory and

virtqueues of other VMs in protected
fashion

KVM ioctl options for QEMU to
extend Guest Memory:
1.  W/O protection, or
2.  W/ protection

•  Extend only in alternate EPT view

VMFUNC #0

PCI BAR

25
25

start_xmit(*skb, *dev) {

...
 send(packets);
}

send(*packet) {
...
 VMFUNC #0, EPTP;
 Tx(packets);
 VMFUNC #0, 0
}

Page Boundary

Tx(*packet) {
 move_data();
 notifify();
}

start_xmit(*skb, *dev) {

...
 send(packets);
}

send(*packet) {
...
 VMFUNC #0, EPTP;
 Tx(packets);
 VMFUNC #0, 0
}

Tx(*packet) {
 move_data();
 notifify();
}

Trampoline Page

EPT
Permission

Default
EPT

Alternate
EPT

Full (X, W, R)

Write-Protected
(X, -, R)

No Access
(-, -, -) Full (X, W, R)

Write-Protected
(X, -, R)

Protected Code

•  Registered by a
trusted entity

•  Entry/Exit to/from
Trusted Code

No Execute
(-, W, R)

•  Specified at
registration time

Additional
pages

Implementing
Protected Access

26

Performance
Estimate from PoC

*Intel internal estimation

+VMFUNC)

Measure cost of VMFUNC and
Trampoline Code:
•  Transfer 64B packets from virtio-net

to another VM (fast path)

65Mpps with 32-packet batching*:

•  Same batching size as DPDK

27

Summary

1.  Minimal Interrupt latency variation for data plane VNFs
(Virtual Network Function)

•  On Track
2.  Inter-VM Communication

•  Preliminary performance data from PoC with trampoline code
•  Implementation proposal (vhost-user-shmem) based on

vhost-user
3.  Fast Live Migration

•  Next presentation

Join OPNFV Projects!

Q & A

