
ARM Caches: Giving you enough rope
... to shoot yourself in the foot

Marc Zyngier <marc.zyngier@arm.com>
KVM Forum ’15

1



Caches on ARM: A technical issue? Or a cultural one?

From: Paolo Bonzini <pbonzini@redhat.com>
To: Christoffer Dall <christoffer.dall@linaro.org>

On 17/02/2015 18:54, Christoffer Dall wrote:
> yes, ARM is 'different' here

The correct spelling is "wrong". :)

KVM/ARM: Lost in translation

2



ARM and cache coherency

What does ARM offer in terms of caches

How are they architected

How visible are they to software

How and when to perform maintenance operations

A few examples

A few rants

A way forward?

3



ARM: The cache coherency myth, and the facts

A common myth about the ARM architecture:

The ARM architecture is not cache-coherent

Yeah, right.

4



ARM: The cache coherency myth, and the facts

Now, the facts:

Cache coherent architecture

Scales from single CPU to massive SMP systems
Implementer chooses to offer caches that are

visible to software
invisible to software
... or any point between these two options

Enough abstraction to cope with these differences
Allows different PPA (Performance, Power, Area) points

Running a VM on your smart watch? Easy.
The same VM on your $15K server? Sure.

The architecture is designed for maximum flexibility.

4



ARM: Cache architecture
(Modified) Harvard architecture

Multiple levels of caching (with snooping)
Separate I-cache and D-cache (no snooping
between I and D)
Either PIPT or non-aliasing VIPT for D-cache
Meeting at the Point of Unification (PoU)

Controlled by attributes in the page tables
Memory type (normal, device)
Cacheability, Shareability

Two Enable bits (I and C)
Actually not really an Enable switch
More like a global “attribute override”

Generally invisible to normal software
With a few key exceptions...
More on that later

CPU1 CPU2 CPU3CPU0

I$L1 I$L1 I$L1 I$L1D$L1 D$L1D$L1D$L1

L2 L2

L3 / System cache

RAM

PoU

5



ARM: Interacting with caches

The ARM architecture offers the usual (mostly) privileged operations to interact with caches:

Invalidate (I & D-cache)

Clean (D-cache)

Clean + Invalidate (D-cache)

Cache maintenance by Virtual Address

Cache maintenance by Set/Way

Set/Way operations are local to a CPU
Will break if more than one CPU is active

No ALL operation on the D side
Iteration over Sets/Ways
Only for bring-up/shutdown of a CPU

Not all the levels have to implement Set/Way
System caches only know about VA

Set/Way operations are impossible to virtualize

VA operations are the only way to perform cache maintenance outside of CPU bring-up/teardown

6



ARM: Interacting with caches

The ARM architecture offers the usual (mostly) privileged operations to interact with caches:

Invalidate (I & D-cache)

Clean (D-cache)

Clean + Invalidate (D-cache)

Cache maintenance by Virtual Address

Cache maintenance by Set/Way

Set/Way operations are local to a CPU
Will break if more than one CPU is active

No ALL operation on the D side
Iteration over Sets/Ways
Only for bring-up/shutdown of a CPU

Not all the levels have to implement Set/Way
System caches only know about VA

Set/Way operations are impossible to virtualize

VA operations are the only way to perform cache maintenance outside of CPU bring-up/teardown

6



ARM: When caches become visible to software
Software needs to be aware of caches in a few cases:

Executable code loading / generation
Requires a D-cache clean to PoU + I-cache invalidation
Possible from userspace on ARMv8
Requires a system call on ARMv7

DMA with non cache-coherent devices
Requires the usual Clean, Invalidate, or both

DMA with cache coherent devices when CPU caches are “off”
More surprising, but needs the same Clean + Invalidate
That’s because caches are never really off...

Conflicting memory attributes
Writing to a non-cacheable mapping...
... and expecting to read consistent data from a cacheable one.
Does it sound familiar?
This is where the proverbial rope kicks in

7



Introducing Stage-2 translation
Virtual machines add their share of complexity:

Second stage of page tables (equivalent to EPT on x86)

Second set of memory attributes

KVM always configures RAM cacheable at Stage-2

These memory attributes get combined with those controlled by the guest:

The strongest memory type wins
Device vs normal memory

The least cacheable memory attribute wins
Non-cacheable is always enforced

And the hypervisor doesn’t have much control over it
Some global controls, but nothing fine grained

The noose is getting tighter.

8



A “benign” example

Booting a 32bit guest on a 64bit host (with an L3 system cache).

The (compressed) kernel image is in RAM
The embedded decompressor:

enables the caches,
decompresses the image
turns the cache off,
flushes it by Set/Way,
and jumps to the payload...

What could possibly go wrong?

System caches do not implement Set/Way ops
So our guest code sits in L3, while fetching from RAM

We need to trap these ops and convert them into VA ops
Which means iterating over all the mapped pages
Good thing we’re only doing that at boot time!

CPU

I$L1 D$L1

L2

L3

RAM

(1) Clean
by S/W

(2) Fetch

9



A “benign” example

Booting a 32bit guest on a 64bit host (with an L3 system cache).

The (compressed) kernel image is in RAM
The embedded decompressor:

enables the caches,
decompresses the image
turns the cache off,
flushes it by Set/Way,
and jumps to the payload...

What could possibly go wrong?

System caches do not implement Set/Way ops
So our guest code sits in L3, while fetching from RAM

We need to trap these ops and convert them into VA ops
Which means iterating over all the mapped pages
Good thing we’re only doing that at boot time!

CPU

I$L1 D$L1

L2

L3

RAM

(1) Clean
by S/W

(2) Fetch

9



A more annoying one
Let’s imagine...

A VM running on a (busy) host, swapping out pages

A cache coherent I/O subsystem

We have no visibility of the guest’s memory attributes

It could have written to memory from a non-cacheable mapping

The page is swapped out via the host kernel’s linear mapping

What could possibly go wrong again?

Requires an Clean + Invalidate on the page that is about to be
evicted

Could otherwise write out stale data (from the cached mapping)

Always performed on Stage-2 unmap

CPU

I$L1 D$L1

L2

L3

RAM

(1) Write

(2) Swap out

10



A more annoying one
Let’s imagine...

A VM running on a (busy) host, swapping out pages

A cache coherent I/O subsystem

We have no visibility of the guest’s memory attributes

It could have written to memory from a non-cacheable mapping

The page is swapped out via the host kernel’s linear mapping

What could possibly go wrong again?

Requires an Clean + Invalidate on the page that is about to be
evicted

Could otherwise write out stale data (from the cached mapping)

Always performed on Stage-2 unmap

CPU

I$L1 D$L1

L2

L3

RAM

(1) Write

(2) Swap out

10



What have we learned so far

News flash: This is NOT the x86 behaviour

Should that be surprising? See the logo at the bottom right...

Caches are not just a “make it faster” block slapped on the side of the CPU
They are an essential part of the coherency protocol

Using uncached memory explicitely bypasses it
It looks logical to cope with the consequences

No magic involved!
Following the architecture rules ensures correctness on all implementations
No, Linux on 32bit is not architecturally compliant...

But of course, there is more to virtualization than just the CPU.
There is I/O...

11



<grumpy> Emulated devices: the uncached I/O issue </grumpy>
Top rant about KVM/ARM: My VGA adapter in EMU doesn’t work with KVM

Userspace uses cached memory (via mmap)
The guest uses non-cached memory

Why would the CPU read back from it?

... (you’ve noticed a pattern, haven’t you?)

Who needs a frame buffer anyway?

But it works with TCG!

That doesn’t make it more correct from an
architectural PoV

Something has to be done...

12



<grumpy> Emulated devices: the uncached I/O issue </grumpy>
Top rant about KVM/ARM: My VGA adapter in EMU doesn’t work with KVM

Userspace uses cached memory (via mmap)
The guest uses non-cached memory

Why would the CPU read back from it?

... (you’ve noticed a pattern, haven’t you?)

Who needs a frame buffer anyway?

But it works with TCG!

That doesn’t make it more correct from an
architectural PoV

Something has to be done...

12



<grumpy> Emulated devices: the uncached I/O issue </grumpy>
How to fix this mess:

Hack guest attributes, forcing cacheable
Breaks devices that need uncached access

Cache maintenance from userspace
Requires a new syscall on ARMv7

Allow userspace to mmap uncached
And what if the guest maps it as cached?

Trap every fscking access
It will work, but...

Just tell the guest the device is coherent
The only real solution
Lying to the guest is never good
Might require some surgery though

13



How did we end-up here?
A VGA device on an ARM VM looks like a terrible idea.

VGA was invented in 1987...

... before ARM even existed as a company!
ARM VMs have no legacy to care about

Hey, we don’t even have (need?) a standard platform

We use paravirtualized devices for most things
Console (of the byte stream persuasion)
Networking, storage...

Why don’t we use virtio-vga as well?
We can make sure it is not encumbered by legacy
We don’t have to lie about its virtual aspect

Not all the world is an x86...
Our code base is riddled with assumptions

14



How did we end-up here?
A VGA device on an ARM VM looks like a terrible idea.

VGA was invented in 1987...

... before ARM even existed as a company!
ARM VMs have no legacy to care about

Hey, we don’t even have (need?) a standard platform

We use paravirtualized devices for most things
Console (of the byte stream persuasion)
Networking, storage...

Why don’t we use virtio-vga as well?
We can make sure it is not encumbered by legacy
We don’t have to lie about its virtual aspect

Not all the world is an x86...
Our code base is riddled with assumptions

14



Emulated vs physical devices
Firmware does have some level of support to describe the cache coherency attributes:

General need for topology information
This requirement exists on bare metal
VMs are no exception

DT allows devices to specify their coherency
For PCI, this is set on a per-RC basis

Mixing emulated devices (coherent) with physical devices
Physical devices may or may not be cache-coherent
May need separate RCs to be presented to the guest

ACPI has its own set of attributes
_CCA: x86 mostly, but supported on ARM too
IORT: has support for all the ARM diversity

Though there seems to be a certain reluctance to expose them.

15



Conclusion
KVM and its ecosystem are strongly x86 oriented (tainted?)

Not surprising, this is where it was created

Not all the solutions that worked on x86 make sense on ARM
Nobody needs a Franken-VM
We have the chance of a clean slate

It doesn’t take much effort to fix KVM
All it takes is to follow the architecture requirements - to the letter
RTFAA (Read The Fabulous ARM ARM, almost 6000 pages - and counting)

We already have modern, efficient solutions
Paravirtualization is the best thing since sliced bread

Firmware (UEFI) seems to be the biggest issue
Probably the worse “x86-ism”
It isn’t that hard to address the problems
Just don’t assume that x86 is the solution

16



Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

17


