
ARM® Interrupt Virtualization

Andre Przywara <andre.przywara@arm.com>

1

ARM interrrupt virtualization agenda

GICv2 and virtualization overview

KVM VGIC implementation

GICv3 architecture

GICv3 induced code changes in KVM

VGIC evolution and future plans

2

GICv2 architecture
Device

CPU interface CPU interface CPU interface

Device Device

Core 0 Core 1 Core n
....

AXI bus

IRQ lines (SPIs)

GICv2

....

SGIs

Distributor

PPIs

IRQ/FIQ

3

ARM GICv2 at a glance

Programmed via MMIO accesses
Some registers are banked per CPU (at the same memory address)

"distributor" is the central component
has an input pin for each wired interrupt (SPIs)
connects to a separate CPU interface (one per core)
connects to the IRQ pins on each core
has per-core input pins for private interrupts (PPIs)
handles inter-processor interrupts internally (SGIs)

4

Virtualization support in GICv2

Virtual CPU interface allows IRQ ACKs and EOIs
without exiting the guest

Hypervisor sets up virtual IRQs in List Registers

In the guest the (virtual) CPU interface relates to these
Allows connecting a physical interrupt to a virtual one

Physical IRQs gets EOIed at the same time
No need to trap or monitor EOI in this case anymore

Distributor

IRQ lines (SPIs)

CPU interface

GICH GICV

LRs

GICC

5

KVM VGIC implementation

Lives in virt/kvm/arm (to be shared between arm and
arm64)
Presented as an in-kernel IRQ controller to userland

Userland needs to setup addresses for the MMIO mapping

Distributor is emulated (in vgic.c and vgic-v2-emul.c)

Pending interrupts are written into the list registers (LRs)

Interrupt acknowledgment and EOI is handled without
exiting the guest (by the GIC hardware)

After guest run distributor emulation syncs back from the
LRs

CPU interface

GICV

LRs

GICC
C

virtual IRQs

Distributor

(emulated)

traps

GICH

6

Implementation details and challenges

Banked MMIO accesses deny usage of KVM I/O bus framework (missing vCPU)

Required setup (address base) of irqchip before use has funny effects
Code layout is designed around MMIO handling

Requires extra work on interrupt injection / sync back

State is held in bitmaps and bytemaps (like the hardware)
Works fine with limited, contigious IRQ numbers

Handling of level vs. edge triggered interrupts
Lots of case distinctions necessary - hard to read

Saving state (for migration) proves to be annoying
Requires syncing the virtualized CPU interface as well

7

GICv3 architecture
Device Device Device Device Device

....

AXI bus

IRQ lines (SPIs)

....

SGIs

Distributor

PPIs

GICv3

Redistributor Redistributor Redistributor

Core 0 Core 1 Core n

CPU interface CPU interface CPU interface

ITS

Memory

IRQ/FIQ

MSI MSI

8

GICv3 changes

GICv2 compatibility mode would simplify things, but it is optional :-(

System register access to CPU interface (drops banked MMIO)
IRQ routing allows millions of cores

Lifts the 8-CPU limit of GICv2
Uses MPIDR based values to specify one target core per IRQ

Splits distributor to separate private and shared IRQs
New class of interrupts (LPI) via an Interrupt Translation Service (ITS)

Allows MSI/MSI-X support
Supports indirections for target cores (via collections)
Introduces device ID sampled from the bus
New IRQ class with possibly thousands of LPIs and probably sparse allocation
Tables are held in physical memory

9

GICv3 KVM implications

GICv2 compatibility support simplifies things, but it optional.
No banked MMIO accesses anymore!

But now we have to support both cases in one code base :-(

Distributor / redistributor split
Similar, but not identical→ code refactoring
Introducing more than one MMIO region

Potentially large, sparsely allocated LPIs spoil VGICv2 bitmaps
Leads to LPIs being hold in separate data structures

ITS data structures are held in guest physical memory
Expensive to access from KVM kernel code
Fortunately caching is common in hardware too
Wasting precious, but here unneeded guest memory

10

KVM challenges

KVM code in general is architected to match x86. (No offense!)
GSI IRQ routing not a real fit

Technically not needed for ARM, but no IRQFDs without it
Requires pointless identity (or offsetted) mapping for SPIs
LPI numbers are purely internal

ITS MSIs are identified by doorbell/device-ID/payload triple
Common usage is one doorbell and payload=0 (per-device IRQ number)
Hardware samples device ID from the bus upon doorbell access
Requires addition of device ID to KVM MSI structures
Payload is not a global interrupt number
Guest can change payload (as device ID provides isolation)

11

VGIC evolution

Going from:

one hardware device / one emulation model

with max. 8 CPUs and

a contigious, limited number of wired IRQs

to:

multiple hardware devices / multiple emulation models

with potentially 232CPUs and

non-contigious, large number of wired IRQs and MSIs

asks for some code changes and refactoring ...

12

VGIC refactoring

Explicit VGIC setup and initialization (done)

Use proper KVM I/O bus MMIO handlers (done)

Support multiple hardware models (done)

Support multiple emulation models (with KVM_CREATE_DEVICE) (done)

Utilize connection of physical and virtual IRQs (WIP)
Re-architect VGIC code to focus on used IRQs instead of MMIO accesses (to be done)

Probably split support for different IRQ classes (SGIs, PPIs, SPIs, LPIs)

Incorporate more virtualization features for GICv4 (to be done)
GICv4 provides virtual LPIs being directly injected into a guest
Holds tables mapping vCPUs to physical CPUs

13

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

14

