AGENDA

- Technology
- Key Management
- Integration
MOTIVATION -- CLOUD

- **Hypervisor must enforce full isolation between co-resident VMs**
 - Typically using hardware virtualization support like AMD-V™ Technology
 - “Logical isolation” using page tables, VM intercepts, etc.
 - Sometimes breaks down
 - QEMU “VENOM” (CVE-2015-3456)
 - VirtualBox bug (CVE-2014-0983)
 - Etc.

- **Cloud users must fully trust the cloud hosting company**
 - Hypervisor has full access to guest secrets in memory
 - Hypervisor enforces all isolation
 - Not ideal for users or cloud companies
HARDWARE MEMORY ENCRYPTION - ATTACKS
DEFENDED BY AMD SECURE MEMORY ENCRYPTION + AMD SECURE ENCRYPTED VIRTUALIZATION

User Access Attacks
- Administrator scrapes memory of guest data areas
- Administrator injects code into a guest VM
- Hypervisor bug allows hosted guest to steal data from other guests

Physical Access Attacks
- Probe the physical DRAM interface
- Install HW device that accesses guest memory
- Freeze then steal DIMMs
- Steal NVDIMMs
HARDWARE MEMORY ENCRYPTION - HW SUPPORT

AMD Secure Memory Encryption / AMD Secure Encrypted Virtualization

- Hardware AES engine located in the memory controller performs inline encryption/decryption of DRAM
- Minimal performance impact
 - Extra latency only taken for encrypted pages
- No application changes required
- Encryption keys are managed by the AMD Secure Processor and are hardware isolated
 - Not known to any software on the CPU

Defense against unauthorized access to memory
HW MEMORY ENCRYPTION – AMD SECURE MEMORY ENCRYPTION

- Helps protect against physical memory attacks
- Single key is used for encryption of system memory
 - Can be used on systems with VMs or Containers
- OS/Hypervisor chooses pages to encrypt via page tables
- Support for hardware devices (network, storage, graphics cards) to access encrypted pages seamlessly through DMA

Added defense against unauthorized access to memory
HW MEMORY ENCRYPTION – AMD SECURE ENCRYPTED VIRTUALIZATION

- Protects VMs/Containers from each other, administrator tampering, and untrusted Hypervisor
- One key for Hypervisor and one key per VM, groups of VMs, or VM/Sandbox with multiple containers
- Cryptographically isolates the hypervisor from the guest VMs
- Integrates with existing AMD-V™ technology
- System can also run unsecure VMs

Enhances isolation of VMs
SEV Architecture

Note: Hypervisor serves as untrusted communication channel for guest owner <--- AMD Secure Processor communications
SEV DETAILS

Address Space ID (ASID) determines VM encryption key
- ASID is tagged with all data within the SoC
- ASID determines encryption key to use when data enters/leaves SoC

HW and Guest page tables determine if a page is “private” or “shared”
- Instruction code pages always “private”
- Guest page tables always “private”
- Data pages can be “private” (C=1) or “shared” (C=0) depending on page tables
- Before CR4.PAE=1, all pages are “private”

All DMA must occur to “shared” pages

Example use: all guest pages are “private” except for DMA pages
Key Management
VM LIFECYCLE INTEGRATION

Virtual Machine Flows

Platform Authentication

Virtual Machine Start-up

Virtual Machine Migration
SEV KEY MANAGEMENT

ARCHITECTURE

- Firmware executes on the AMD Secure Processor
 - Isolated from x86 software
- Communicates with x86 software
 - Mailbox registers
 - Shared memory buffers
- Assists hypervisor in VM lifecycle
 - Generates and manages encryption keys
 - Bootstraps memory encryption during guest launch
 - Prepares guest memory image for transmission before migration (or snapshot)
 - Receives guest memory image after migration (or snapshot)
- Enforces guest policy
SEV KEY MANAGEMENT
GUEST LIFECYCLE

Platform Key/Certificate Management
- Authenticity and ownership of the platform

Launching
- Guest images created with unencrypted components
- Need to bootstrap encryption before enabling SEV

Migration and Snapshot
- Support typical migration and snapshot operations
- Protect guest memory image during transmission and storage
- Prevent sending guest to an untrusted platform

Activation
- Associate an ASID with a guest and its memory encryption keys
- Allows overcommitting of key slots
INTEGRATION

Key Management API
- New IOCTL support in KVM to launch guests, migrate guests, etc.
 - Unwrap and encrypt guests for execution
 - Wrap/unwrap guest memory pages for migration
 - Invoke AMD Secure Processor driver to perform communication with the AMD Secure Processor
- Updates to virtualization tools (libvirt, etc.)
 - Initialize platform
 - Store and provide guest key material
 - Return guest measurements
INTEGRATION

Key Management API

ASID Management

- SEV guests must have the same ASID for all vCPUs
 - Requires TLB flush if a different vCPU for the same ASID is to be run on the same host CPU
- SEV guests must have an ASID value within specified range
 - SEV ASID range obtained through CPUID instruction
- Non-SEV guests can use any ASID
 - Should use a value outside the SEV ASID range to avoid reducing available SEV resources
INTEGRATION

- Key Management API
- ASID Management
- Debug Support
 - Controlled through guest policy
 - Allows for QEMU to encrypt/decrypt guest memory
 - Maintains compatibility with current QEMU debug techniques
INTEGRATION

- Key Management API
- ASID Management
- Debug Support
- Paravirt Drivers
 - VirtIO
 - Requires “shared” pages for any memory that the HV needs to access
 - Virtqueues
 - Buffers used by HV to perform data operation
 - KVM Clock
 - “Shared” page in early boot
 - Others...
INTEGRATION

- Key Management API
- ASID Management
- Debug Support
- Paravirt Drivers

DMA
- Must be performed to “shared” pages
- Make use of SWIOTLB to go between “private” and “shared” pages
SOFTWARE SUMMARY

- AMD is developing
 - AMD Secure Processor firmware to implement key management tasks (distributed in AGESA)
 - Signed by AMD, source not public
 - Linux driver to facilitate HV to AMD Secure Processor communication
 - Open source

- Other major components
 - Linux kernel support for AMD Secure Memory Encryption and AMD Secure Encrypted Virtualization
 - RFC patches have been sent to LKML
 - KVM/QEMU support
 - Managing ASIDs, facilitating guest owner communication, etc.
REFERENCES

- [AMD Memory Encryption](#) – Overview of AMD Secure Memory Encryption and AMD Secure Encrypted Virtualization features

- [AMD64 Architecture Programmer’s Manual Volume 2: System Programming](#) (sections 7.10 and 15.34)
- [Secure Encrypted Virtualization Key Management](#)
Thank You!
1. AMD Secure Processor (formerly “Platform Security Processor” or “PSP”) is a dedicated processor that features ARM TrustZone® technology, along with a software-based Trusted Execution Environment (TEE) designed to enable third-party trusted applications. AMD Secure Processor is a hardware-based technology which enables secure boot up from BIOS level into the TEE. Trusted third-party applications are able to leverage industry-standard APIs to take advantage of the TEE’s secure execution environment. Not all applications utilize the TEE’s security features. AMD Secure Processor is currently only available on select AMD A-Series and AMD E-Series APUs. GD-72