Enhancing Live Migration Process for CPU and/or memory intensive VMs running Enterprise applications

Benoit Hudzia CEC Belfast / SAP Research 08/2011 With the contribution of Aidan Shribman and Petter Svard

- Background: Enterprise Applications and Live Migration
- Warm Up
- Delta Compression
- Page Priority
- Future Works

Background

Migrating Enterprise Class applications

Enterprise application and Live Migration

Issues

•Enterprise class application:

- Bigger than average resource requirement
- Average SAP ERP 16GB + per VM with 32 GB of swap more than common
- OLTP system such as ERP are very sensitive to time variation.
- Rely heavily on precise scheduling capabilities, triggers, timers and on the ACID compliance of the underlying

•Challenge when migrating such application:

- Disconnection of services:
 - Gigabit Ethernet timeout \approx 5 seconds (>500 MB memory left in stop and copy phase)
 - Downtime is workload dependent
 - Disruption of services:
 - Migration progressively increasing the amount of resource dedicated to itself => gradually degrade performance of the coexisting systems / VMs.
- Difficulty to maintain consistency and transparency
- Unpredictability and rigidity

Warm Up for Live Migration

Increasing the flexibility of Live Migration

Warm Up Increasing flexibility

Extended adaptive Pre-copy phase without triggering actual migration Increased flexibility :

• "just in time" triggering of live migration

Jtilization

Experimental Results: Warm-up Summary

SAP Sales and Distribution Benchmark

VM size : 4GB		CPU	Avg Response Time	
SMP : 2 vCPU	Baseline	60%	2.18 sec	Downtime under load: <1 sec
Users : 150	Warm-up	73%	2.16 sec	Success ratio : ~99%
		-	•	

Load ~= 80%

Delta Compression of Page

Limiting the impact of resending Page

Dirty Page Delta Compression

- Cache page with highest dirtying rate during send operation
- Compression Algorithm:
 - -XBRLE : XOR +binary run length encoding

Evaluation

Benchmark

Memory write benchmark (Im_bench)

- 1 GB RAM, 1 vcpu VM
- Near ideal case
- Downtime reduced by a factor of 100
- Throughput increased by 63 %

Transcoded HD Video (VLC)

- 1 GB RAM, 1 vcpu VM
- Real-world, non-ideal case
- UDP downtime reduced from 8 s to 1
- Migration is transparent using XBRLE
- 31% faster, 51% less data sent

Evaluation- SAP ERP

Sales and Distribution benchmark, load 100%

- Non-responsive on resume
 with vanilla algorithm
- Survived using XBRLE
- >0.5s of downtime = risk of damaging the system

- Measured downtime was 0.2s for XBRLE and 2s for vanilla
- Live Migration Cpu usage directly impact (limit) the available resource for the ERP

Page Prioritization

Dynamic page transfer reordering

Dynamic page transfer reordering

Prioritizing page sends (similar to writable working set concept in Xen)

Dynamic page transfer reordering

Prioritizing page sends

Transfer order

- Streaming HD video migration

Γ		Total migration time	Transferred data
	Vanilla	22.1 s	459 MB
	PRIO	15.4 s	225 MB

• 31% faster, 51% less data sent

Evaluation

Prio vs XBRLE : reveal Cache miss and compression efficiency Issue

Optimizing Compression

Making XBRLE more efficient

XBZRLE

Increase compression speed /efficiency

•Only compress unmodified data using word aligned encoding and only encodes runs of zeros

- •For encoding page diffs XBZRLE is:
 - Compression :
 - 20% more efficient than XBRLE
 - 20% less efficient than LZO/Snappy.
- Speed:
 - Overall 2.5x-5x faster than XOR + LZO/Snappy
 - 11x-9x faster than the original XBRLE

Doesn't solve the impact of cache miss

Performance comparison

Synthetic benchmark representing enterprise workload

Performance comparison Live Migration Benchmark

- Compute capacity used for live migration :
 - xbzrle : 50%
 - vanilla: between 30%-60%
- Live Migration:
 - xbzrle : terminate in seconds
 - Vanilla :not able to complete in the allocated time

Future Work

Future Works

 Dynamically disable XBZRLE algorithm if the cache miss ratio is to important

•Combine Page priority algorithm and XBZRLE:

- Cache page with highest dirtying rate
- Eliminate unnecessary cache check
- Eliminate page compression with low potential return

Thank You!

Contact information:

Dr. Benoit Hudzia Senior Researcher benoit.hudzia@sap.com

Experimentations Results: S&D Benchmark with/out warm-up

		CPU	Avg Response Time		
P:2vCPU	Baseline	60%	2.18 sec	Downtime under load: <1 sec	
rs : 150	Warm-up	73%	2.16 sec	Success ratio : ~99% SAP RESEARCH	

SMP

User

Live Migration over emulated WAN Link

