An Introduction to PCI Device
Assignment with VFIO

Alex Williamson / alex.williamson®@redhat.com

<« rednat

Whatis VFIO?

- redhat

Officially:

Virtual Function1/0

Virtual Function /0

..but it's not limited to SR-I0OV, or even PCI

Some suggest...

Very Fast 1/0

Very Fast 1/0

Sort of, yeah...

I've also heard...

Virtual Fabric /0

Virtual Fabric /0

&

Fabric?

Let me propose...

Versatile Framework for
userspace l/0

Versatile Framework for
userspace l/0

(OK, not really, but it's more accurate)

VFIO Is a secure, userspace
driver framework

VFIO Is a secure, userspace
driver framework

e Hardware IOMMU based DMA mapping and isolation
= |OMMU group based

VFIO Is a secure, userspace
driver framework

e Hardware IOMMU based DMA mapping and isolation
= |OMMU group based

e Modular IOMMU and bus driver support
= PCl| and platform devices currently supported
= |OMMU API (typel) and ppc64 (SPAPR) models

VFIO Is a secure, userspace
driver framework

e Hardware IOMMU based DMA mapping and isolation
= |OMMU group based

e Modular IOMMU and bus driver support
= PCl| and platform devices currently supported
= |OMMU API (typel) and ppc64 (SPAPR) models

e Full device access, DMA, and interrupt support
= Read/write & mmap support of device resources
= Mapping of user memory to I/O virtual addresses
= eventfd and irgfd based signaling mechanisms

Q redhat

Userspace drivers?

Weren't we talking about device assignment...

The requirements are the same

e Access to device resources
e |solation and secure DMA mapping through an IOMMU
e Interrupt signaling support

Device assignment is simply a multi-layer
userspace driver

Also enables other userspace drivers

e DPDK - Data Plane Development Kit (NFV)
e UNVMe - A userspace NVMe driver

e rVFIO - Ruby wrapper gem for VFIO

- redhat

VFIO provides access to a device
within a secure and programmable
|OMMU context

Let's start with the device

Let's start with the device

e How does adriver program a device?

Let's start with the device

e How does adriver program a device?
e How does a device signal the driver?

Let's start with the device

e How does adriver program a device?
e How does a device signal the driver?
e How does a device transfer data?

Let's start with the device

e How does adriver program a device?
e How does a device signal the driver?
e How does a device transfer data?

VFIO takes an abstract view of a device, we
want to support anything

How does a device driver program a
PCl device?

How does a device driver program a
PCl device?

e Programmed |/O
= IN/JOUT
= read/write

How does a device driver program a
PCl device?

e Programmed |/O 31 1615 ﬂ
Device ID Vendor ID 00h
| I N/OU T Status Command 04h
Class Code Revision ID | 08h
" Irea d/w r ite BIST Header Type| Lat. Timer |Cache Line S.| 0Ch
10h
e PC| Configuration Space 1ah
Base Address Registers iz:
20h
24h
Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved Cap. Pointer| 34h
Reserved 38h

Max Lat. Min Gnt. [Interrupt Pin|nterrupt Ling 3Ch

The VFIO device file descriptor

e Divided into regions
e Each region maps to a
device resource

101010010
1110101 = Ex. MMIO BAR, |10 BAR,
1111 PCI config space

00 : .
| e Region count and info

discovered through ioctl
= File offset, allowable
access, etc.

A PCIl device example

01:00.0 VGA compatible contreller:

NVIDIA Corpeoration GM107

Region 0: Memory at 6000000 (32-bit, non-prefetchable) [size=16M]
Region 1: Memory at 0000000 (6d-bit, prefetchable) [sgize=256M]
Region 3: Memory at f0000000 (64-bit, prefetchable) [size=32M]
Region 5: I/0 ports at 2000 [s1ze=128]

Expansion ROM at f£7000000 [disabled] [size=512K]

A PCIl device example

01:00.0 VGA compatible contreller: NVIDIA Corpeoration GM107

Region 0: Memory at f£6000000 (32-bit, non-prefetchable) [size=16M]
Region 1: Memory at e0000000 (6i-bit, prefetchable) [size=256M]
Region 3: Memory at f0000000 (64-bit, prefetchable) [size=32M]
Region 5: I/0O ports at €000 [size=128]

Expansion ROM at f£7000000 [disabled] [size=512K]

These are all regions

A PCIl device example

01:00.0 VGA compatible contreller: NVIDIA Corpeoration GM107

Region 0: Memory at f£6000000 (32-bit, non-prefetchable) [size=16M]
Region 1: Memory at e0000000 (6i-bit, prefetchable) [size=256M]
Region 3: Memory at f0000000 (64-bit, prefetchable) [size=32M]
Region 5: I/0O ports at €000 [size=128]

Expansion ROM at f£7000000 [disabled] [size=512K]

These are all regions

Even PCIl config space itself is a region

Regions map to device file offsets

01:00.0 VGA compatible controller: NVIDIA Corporation GM107

Region 0: Memory at f6000000 (32-bit, non-prefetchable) [size=16M]

Region 3: Memory at f£0000000 (64-bit, prefetchable) [size=32M]

eglon o2: I/0 ports at 28 |

O |= [N | | < | |O |~ |©
c|lc|lclc|lc|lc|lc|c|c
el |eljejeje|e(2 |8
oDl | oo DO D
Q|0 |0 |O0|O0|OD|O|O|O
o x| x| | x| xx x| x|

0 File offset >

(not to scale)

Properties discovered via ioctls

Properties discovered via ioctls

VFIO DEVICE GET INFO

struct vfio_device_info

—— argsz

—— flags

—— VFIO_DEVICE_FLAGS_PCI

—— VFIO_DEVICE_FLAGS_PLATFORM
— VFIO_DEVICE_FLAGS_RESET
—— num_1irqs

num_regions

Properties discovered via ioctls

VFIO DEVICE GET REGION_INFO

struct vfio_region_info

—— argsz

—— cap_offset

— flags

—— VFIO_REGION_INFO_FLAG_CAPS
—— VFIO_REGION_INFO_FLAG_MMAP
—— VFIO_REGION_INFO_FLAG_READ
—— VFIO_REGION_INFO_FLAG_WRITE
index

offset

size

Properties discovered via ioctls

VFIO DEVICE_GET IRQ_INFO

struct vfio_1irqg_info

—— argsz

—— count

—— flags

—— VFIO_IRQ_INFO_AUTOMASKED
—— VFIO_IRQ_INFO_EVENTFD
— VFIO_IRQ_INFO_MASKABLE
—— VFIO_IRQ_INFO_NORESIZE
— index

Speaking of interrupts

Speaking of interrupts

Q: How does a device signal the driver?

Speaking of interrupts

Q: How does a device signal the driver?

A: Interrupts

Q redhat

How do we interrupt userspace?

How do we interrupt userspace?

EVENTFD(2) Linux Programmer's Manual EVENTFD(2)

NAME
eventfd - create a file descriptor for event notification

SYNOPSIS

int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object” that can be used as an event
walt/notify mechanism by user-space applications, and by the kernel
to notify user-space applications of events...

VFIO DEVICE SET IRQS

struct vfio_irq_set

—— argsz

—— count

—— datal]

—— flags

— VFIO_IRQ_SET_ACTION_MASK
—— VFIO_IRQ_SET_ACTION_TRIGGER
— VFIO_IRQ_SET_ACTION_UNMASK
— VFIO_IRQ_SET_DATA_BOOL

— VFIO_IRQ_SET_DATA_EVENTFD
— VFIO_IRQ_SET_DATA_NONE
index

start

One remaining question

How does a device transfer data?

Direct Memory Access - DMA

e |/O device can read & write:
= System memory (RAM)
= Peer device memory

e Outside of CPU MMU control

Direct Memory Access - DMA

e |/O device can read & write:
= System memory (RAM)
= Peer device memory

e Outside of CPU MMU control

Need an MMU for I/O, an IOMMU

|IOMMU Roles

|IOMMU Roles

e Translation
= |/O Virtual Address (IOVA) space
= Previously the main purpose of an |IOMMU

|IOMMU Roles

e Translation

= |/O Virtual Address (IOVA) space

= Previously the main purpose of an |IOMMU
e |solation

= Per device translation

= |[nvalid accesses blocked

|IOMMU Roles

e Translation

= |/O Virtual Address (IOVA) space

= Previously the main purpose of an |IOMMU
e |solation

= Per device translation

= |[nvalid accesses blocked

Both required for secure user access

|IOMMU Issues

e DMA Aliasing
= Not all devices generate unique IDs

= Not all devices generate the ID they should
e DMA Isolation

= Peer-to-peer DMA translation

|
[=I I |,}

3

Solution: IOMMU groups

e Group of devices with DMA isolation from other groups
e Grouping determined by IOMMU driver
= Not user configurable
e Influencing factors:
= |OMMU capabilities
= Endpoint device isolation
= Bus and interconnect properties
e Heavily influences VFIO design

Memory Issues

e |OVA page faults are not supported end-to-end
= |OVA to physical mappings are static

e User memory can be relocated
= Swapping, page merging, etc

Memory Issues

e |OVA page faults are not supported end-to-end
= |OVA to physical mappings are static

e User memory can be relocated
= Swapping, page merging, etc

Solution: Page pinning

A few downsides

e Pinned memory is locked memory

= User requires sufficient locked memory limits
e Prevents page merging and swapping

= As intended, but we like those features

Let's walk through an example

IOMMU grouping considerations:
- IOMMU visibility
- DMA Isolation

Binding devices to vfio-pci results in vfio group nodes

[dev/vfio/23

/dev/viio/42

Sdev/vfio/23

‘I-
*-

fdev/vfio0/42

open("/dev/vfio/vfio")

Sdev/vfio/23

‘I-
*-

fdev/vfio0/42

contalner

open("/dev/vfio/42")

fdev/vfio0/42

contaliner group

ioctl(group, VFIO_GROUP_SET_CONTAINER, &container)

Sdev/vfio/23

contalner

ioctl(container,VFIO_ _SET_IOMMU,VFIO_TYPE1l IOMMU)

-

Sdev/vfio/23

II ,l'-

. a ..__
y
,-' !
- |

i
| I- |
\

.-. .I-

“H fdev/vTfio/42

.. group

—_— —

contalner

open("/dev/vfio/23")

[/ == ""'1 group2

\ \ - .
_ /dev/vfio/42 /

“~._group

— i

contalner

1octl(group2, VFIO_GROUP_SET_CONTAINER, &contalner)

F
i

F

_'.. - ..\\ g .. 1

[f % W [.'.
I IIII- !- II '- | I|
. — ' |
\ \ *- | NJdev/vfio/23/
\ . " .-_.-' f

_ /dev/vfio/a2 /

. groupz
M . -. g rnup .- 4

—_— —

contalner

1octl(container,VFIO_IOMMU_MAP_DMA, &map)
1octl(container,VFIO IOMMU UNMAP_DMA, &unmap)

fﬁf””m- .___Eﬂh TOMMU

1 | :
" I't - ' fdevafmff’ﬂ

A deVf\.fﬁ.ﬂf"dE 4

e

grnupz
~augrUUP ”

e —

.-'-'-..

contalner

1octl(group2,
VFIO_GROUP_GET_DEVICE_FD, "0000:01:00.0")

~ - N
- . -
.-f . B . - —_ \\x Heglﬂn B
:f, ~) - HH"a \ | Region 7
/ -_x__ - \ | Region 6
[| ' I
| -_ | * Region 5
"'u_. - ' fdevafmfzﬂf Region 4
\ | o /
N Idevaﬁ.uME / '
\ 7 Fegon 3
O\ g rnupz) | - .
~._group S Region 2
"_hh_ - - — | Reg'iﬂﬂ 1
container I—LL

device Td

VFIO in a nutshell

VFIO in a nutshell

VFIO in a nutshell

VFIO in a nutshell

11111111111

gggggg

VFIO in a nutshell

VFIO in a nutshell

nnnnnn

11111111111

gggggg

-n

VFIO in a nutshell

nnnnnn

11111111111

gggggg

-n

VFIO in a nutshell

nnnnnn

11111111111

gggggg

-n

| rII IIII ill|I 11I | | |II |II| I||| ||I |

A device decomposed

- redhat

Deconstructed device in userspace...

gion 3

glan 1

Deconstructed device in userspace...

QEMU

Quick EMUlator

Quick EMUIlator

"Creating fake devices since 2003"

Same questions, different perspective

e How does the guest program a device?
e How does a device signal the guest?
e How does a device transfer data?

Device Programming

How does VM programmed |I/O reach a device?

Device Programming

How does VM programmed |I/O reach a device?

e Trapped by hypervisor (QEMU/KVM)

Device Programming

How does VM programmed |I/O reach a device?

e Trapped by hypervisor (QEMU/KVM)
e MemoryRegion lookup performed

Device Programming

How does VM programmed |I/O reach a device?

e Trapped by hypervisor (QEMU/KVM)
e MemoryRegion lookup performed
e MemoryRegion.{read,write} accessors called

Device Programming

How does VM programmed |I/O reach a device?

e Trapped by hypervisor (QEMU/KVM)

e MemoryRegion lookup performed

e MemoryRegion.{read,write} accessors called
e read/write to vfio region offsets

MemoryRegion Layering

e "Slow" read/write base layer
e "Fast" mmap overlay
e "Quirks" to correct device virtualization issues

Region 1

g uoibay

J uoibay

g uoibay

¢ uoibay

+ unibay
SER

uoibay

T totbas

0 uoibay

read/write

Region 1

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay
SER

uoibay

T totbas

0 uoibay

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay

read/write
Region 1

SER

uoibay

T totbas

0 uoibay

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay

read/write
Region 1

SER

uoibay

T totbas

0 uoibay

Region 1

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay
SER

uoibay

T totbas

0 uoibay

Region 1

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay
SER

uoibay

T totbas

0 uoibay

Region 1

g uoibay

J uoibay

g uoibay

¢ uoibay

+ uoibay
SER

uoibay

T totbas

0 uoibay

Region 1

Device Programming

How do gquest PCIl Config accesses reach a device?

e Not handled as MemoryRegions (yet)
e Selective handling
= Direct pass-through
o read/write to config region

= Emulation & Virtualization
o MSI/X, BARs, ROM, etc.

Interrupt Signaling

e QEMU configures vfio interrupt ioctl for device state
e Interrupts signal via eventfd
e EventNotifiers trigger QEMU device interrupts
e Two step process
= host - QEMU, QEMU - VM
e How to make it faster?

irqfd

e eventfds signal events

e irqfds receive event signals

e eventfds can signal irgfds

e KVM supports VM interrupts through irgfd
e One step process: host - KVM

e No exit to userspace

Accelerating IRQs in hardware

Accelerating IRQs in hardware

e APIC Virtualization (Intel APICv)
= Exit-less interrupts into VM

Accelerating IRQs in hardware

e APIC Virtualization (Intel APICv)
= Exit-less interrupts into VM

e VT-d Posted Interrupts
= |nterrupts direct to vCPU

Last question

How does a device transfer data?

Enabling DMA for the VM

Transparent VM mapping

e Map entire guest physical address space
e No IOMMU visible to guest

= DMA is quest physical

= Host IOMMU maps guest physical to host physical
e Accomplished through QEMU MemoryListeners

Q redhat

Summary

* How does the guest program a device?
QEMU: MemoryRegions”®
VFIO: Device file descriptor regions

* How does a device signal the quest?
QEMU: EventNotifiers
VFIO/KVM: Eventfds/irqfds configured via ioctls

* How does a device transfer data?
QEMU: MemoryListeners
VFIO: IOMMU mapping & pinning ioctls

*Except PCl configuration space

PCI Device assignment with VFIO

The Complete Picture

ggggg

PITRERREl
STy 2 FER T —

kernel ‘ userspace

- redhat

Vv
N\

y

4

Intel Graphics Device (IGD)
Assignment

e Sandy Bridge+: "Legacy" mode

= Host: Linux v4.6+, QEMU 2.7+
e Broadwell+: Universal Passthrough (UPT) mode
e See http://vfio.blogspot.com for details

<« rednat

<« rednat

No new Code 43 problems!
Workaround for NVIDIA Hyper-V detection "bug"”

-cpu ...,hv_vendor_id=KeenlyKVM

<hyperv>

<vendor_1id state='on' value="KeenlyKVM'/>

{!H}ﬁerv}

QEMU 2.5+, libvirt v1.3.3+

"Mediated Device" Development

vGPU on KVM - A VFIO Based Framework
by Neo Jia & Kirti Wankhede from NVIDIA
Thursday 10am

Collaboration with Intel, IBM, and Red Hat

Expose kernel-level virtual devices to userspace
using VFIO API

- redhat

Resources

e http://vfio.blogspot.com
= |OMMU Groups, inside and out
= VFIO GPU How-To Series

e vfio-users mailing list

e Hvfio-users on freenode

http://awilliam.github.io/presentations/KVM-Forum-2016

- redhat

Questions?

+J
O
-

©
nr__.

Q redhat

Alex Williamson / alex.williamson®redhat.com

