
 1 / 28

Vhost: Sharing is better

Eyal Moscovici, IBM
Bandan Das, Red Hat

Also funded by Mikelangelo (

Eyal Moscovici

 Partly sponsored by:

Bandan Das

 2 / 28

What's it about ?

● Paravirtualization: Shared Responsibilities

● Vhost: How much can we stretch ?

● Design Ideas: Parallelization

● Design Ideas: Consolidation

● Vhost: ELVIS

● Upstreaming

● Results

● Wrap up and Questions

 3 / 28

Shared Responsibilities
● From Virtualization to Paravirtualization

● Virtio – Host/Guest co-ordination

– - Standardized backend/frontend drivers

● Advantages

– - Host still has ultimate control (compared to
hardware device assignment)

– - Security, Fault tolerance, SDN, file-based
images, replication, snapshots, VM migration

● Disadvantages

– - Scalability Limitations

 4 / 28

Shared Responsibilities
● Vhost kernel

– - Let's move things into the
kernel (almost!)

– - Better userspace/kernel API

– - Avoids system calls,
improves performance

– - And comes with all the
advantages of virtio

vCPU

Vhost
worker
thread

ioeventfd

Network
Stack

irqfd

Read/Write

Virtio
buffers

Guest

KVM

 5 / 28

How much can we stretch ?
● One worker thread per virtqueue pair

● More guests = more worker threads

– - But is it necessary ?

– - Can a worker share responsibilities ?

● Performance will improve (or at least stay the same)

– - Main objective: Scalable performance

● No userspace modifications should be necessary

 6 / 28

Parallelization (Pronunciation Challenge)

● A worker thread running on
every CPU core.

● Guest/Thread mapping is
decoupled.

● Guest serviced by a free
worker thread with NUMA
locality

● Presented by Shirley Ma at
LPC 2012

CPU0

Guest Guest Guest Guest

CPU1 CPU2 CPU3

Vhost-1 Vhost-2 Vhost-3 Vhost-4

Numa-aware scheduling

Tx/Rx Tx/Rx Tx/Rx Tx/Rx

 7 / 28

Parallelization
● But….

- Do we really need “always-on” threads ?

● - is it enough to create threads on demand ?

– - Scheduling more complicated when number of
guests increase ?

● - Why not share a thread among multiple devices ?

 8 / 28

Consolidation - ELVIS (Not the singer)

Presented by Abel Gordon at KVM Forum 2013

● Divide the cores in the system into two
group: VM cores and I/O cores.

● A vhost thread servicing multiple I/O devices
from different guest

● has a dedicated CPU core

● A user configurable parameter determines
how many.

● A dedicated I/O scheduler on the vhost
thread

● Posted interrupts and polling included!

I/O
CoreCore NCore 2Core 1Core 1
I/O

Core

I/O
VM1

Core N

VMi
I/O

VM2

fine-grained
I/O scheduling

Core 2

I/O
VM2
I/O
VMi

thread-based scheduling

E
xe

cu
tio

n
T

im
e

VMj

VMi

VM1
VCPU1

I/O
VM1

I/O
VMj

I/O
VM2

…

VM2
VCPU2

I/O
VM2
I/O
VMiE

xe
cu

tio
n

T
im

e

VM1
VCPU2

VM2
VCPU1

 9 / 28

ELVIS Polling Thread
● Single thread in a dedicated core monitors the activity of

each queue (VMs I/O)

● Balance between queues based on the I/O activity

● Decide which queue should be processed and for how
long

● Balance between throughput and latency
● No process/thread context switches for I/O

● Exitless communication (in the next slides)

 10 / 28

ELVIS Polling Thread

VCPU
Thread
(Core X)

guest

hypervisor

(time)

I/O
Thread
(Core Y) hypervisor

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O
Request

Complete I/O
Request

ELVIS

VCPU
Thread
(Core X)

(time)

I/O
Thread
(Core Y)

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O
Request

Complete I/O
Request

Traditional Paravirtual I/O

Polling
Exitless virtual interrupt

injection (via ELI)

guest

hypervisor

hypervisor

 11 / 28

ELVIS Exitless communication
● Implemented software posted interrupt based on ELI

(Exitless interupts)

- ELI will be very hard to upstream

● Possible replacements

- KVM PV EOI introduced by Michael S. Tsirkin

– - INTEL VT-d Posted-interrupts (PI) which may be
leveraged

 12 / 28

Upstreaming..
● A lot of new ideas!

● First Step

– - Stabilize a next generation vhost design.

● The plan:

– - Introduce a shared vhost design and run benchmarks with
different configurations

● - RFC posted upstream
● - Initial test results favorable

● Later enhancements can be introduced gradually...

–

 13 / 28

Cgroups (Buzzwords, JK ;))

● Initial approach

– - Add a function to search all cgroups in all
hierarchies for the new process.

– - Even a single mismatch => create a new vhost
worker.

● But..

– - What happens when a VM process is migrated
to a different cgroup ?

– - Can we optimize the cgroup search ?

– - What happens if use polling?

– - Rethink cgroups integration ?

–

Guest1Guest1

 CG1 CG2 CG3

 G1 G2 G3

WG3

WG3

WG3

WG1

WG1

WG1

WG2

WG2

WG2

WG3

WG1

WG3

Per Device Vhost Worker

Shared Vhost
Worker

 14 / 28

Cgroups and polling
● Can a vhost polling thread poll guests with missmatching

cgoups?

– - Yes, but it will require the polling thread to take into
account cgroup state of the guest.

● Probably requires a deeper integration of vhost and cgroups

–

–

 15 / 28

Workqueues (cmwq) (Even more sharing!)

● Can we use concurrency managed workqueues ?

● NUMA awareness comes free!

● But wait, what about cgroups ?

– - No cgroups support (at least yet, WIP)

● Less code to manage, less bugs.

● Cons-

– - Minimal control once work enters the workqueue

– - Again, no cgroups support :(

–

–

 16 / 28

Results
● ELVIS results

– - A little old but significant

– - Includes testing for Exit Less Interrupts, Polling

● - Valuable data for future work
● Setup

– - Linux Kernel 3.1

– - IBM System x3550 M4, two 8-cores sockets of Intel Xeon E5-2660, 2.2 GHz, 56GB RAM

– and with an Intel x520 dual port 10Gbps

– - QEMU 0.14

● Results showing the performance impact of the different components of ELVIS

– - Throughput: Netperf TCP stream w. 64 byte messages

– - Latency: Netperf UDP RR

 17 / 28

Results – Components of ELVIS

1 2 3 4 5 6 7
0.75

0.80

0.85

0.90

0.95

1.00

1.05

netperf udp rr

elvis

elvis-poll

elvis-poll-pi

vms
re

la
tiv

e
 la

te
n

cy

1 2 3 4 5 6 7
0.8

0.9

1.0

1.1

1.2

1.3

1.4

netperf tcp stream

elvis-poll-pi

elvis-poll

elvis

VMs

R
e

la
tiv

e
 th

ro
u

g
h

p
u

t

 18 / 28

Even more Results
● New results with RFC patches

– - Two systems with Xeon E5-2640 v3

– - Point to point network connection

– - Netperf TCP throughput (STREAM & MAERTS)

– - Netperf TCP Request Response

 19 / 28

Results

 20 / 28

Results

 21 / 28

So, ship it ?!
● Not yet :)

● Slowly making progress towards a acceptable solution

● Scope for a lot of interesting work

 Questions/Comments/Suggestions ?

 22 / 28

Backup

 23 / 28

ELVIS missing piece
● Polling on the physical NIC

- It may be possible to use low-latency Ethernet device
polling introduced in kernel 3.11

● * I have an ELVIS version polling the physical NIC that
 is not using this patch

 24 / 28

Results – Performance (Netperf)

1 2 3 4 5 6 7
0

2

4

6

8

10

netperf tcp stream

elvis-poll-pi

elvis-poll

elvis

baseline

baseline-affinity

VMs

T
h

ro
u

g
h

p
u

t (
G

b
p

s)

1 2 3 4 5 6 7
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

netperf udp rr

baseline

elvis

elvis-poll

elvis-poll-pi

vms
la

te
n

cy
 (

m
se

c)

 25 / 28

Results – Performance (Netperf)

● Different message sizes require different number of IO cores
● Using sidecores is beneficial in a wide range of message sizes
● The number of VMs “doesn't matter” for throughput

 26 / 28

Results – Performance (Netperf UDP RR)

● One I/O side core is not enough, two is needed
● sidecore performs up to x1.5 better then Baseline

 27 / 28

Results – Performance (memcached)

● One I/O side core is not enough, two is needed
● sidecore performs up to > x2 better then Baseline

 28 / 28

Results – Performance (apachebench)

● One I/O side core is not enough, two is needed
● sidecore performs up to x2 better then Baseline

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

