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What's it about ?

● Paravirtualization: Shared Responsibilities

● Vhost: How much can we stretch ?

● Design Ideas: Parallelization

● Design Ideas: Consolidation

● Vhost: ELVIS

● Upstreaming

● Results

● Wrap up and Questions
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Shared Responsibilities
● From Virtualization to Paravirtualization

● Virtio – Host/Guest co-ordination

– - Standardized backend/frontend drivers

● Advantages

– - Host still has ultimate control (compared to 
hardware device assignment)

– - Security, Fault tolerance, SDN, file-based 
images, replication, snapshots, VM migration

● Disadvantages

– - Scalability Limitations
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Shared Responsibilities
● Vhost kernel

– - Let's move things into the 
kernel (almost!)

– - Better userspace/kernel API

– - Avoids system calls, 
improves performance

– - And comes with all the 
advantages of virtio
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How much can we stretch ?
● One worker thread per virtqueue pair

● More guests = more worker threads

– - But is it necessary ?

– - Can a worker share responsibilities ?

● Performance will improve (or at least stay the same)

– - Main objective: Scalable performance

● No userspace modifications should be necessary
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Parallelization (Pronunciation Challenge)

● A worker thread running on 
every CPU core.

● Guest/Thread mapping is 
decoupled.

● Guest serviced by a free 
worker thread with NUMA 
locality

● Presented by Shirley Ma at 
LPC 2012
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Parallelization
● But….

- Do we really need “always-on” threads ?

● - is it enough to create threads on demand ?

– - Scheduling more complicated when number of 
guests increase ?

● - Why not share a thread among multiple devices ?
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Consolidation - ELVIS (Not the singer)

Presented by Abel Gordon at KVM Forum 2013 

● Divide the cores in the system into two 
group: VM cores and I/O cores.

● A vhost thread servicing multiple I/O devices 
from different guest

● has a dedicated CPU core

● A user configurable parameter determines 
how many.

● A dedicated I/O scheduler on the vhost 
thread

● Posted interrupts and polling included!
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ELVIS Polling Thread 
● Single thread in a dedicated core monitors the activity of 

each queue (VMs I/O)

● Balance between queues based on the I/O activity

● Decide which queue should be processed and for how 
long

● Balance between throughput and latency
●  No process/thread context switches for I/O

●  Exitless communication (in the next slides)
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ELVIS Polling Thread
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ELVIS Exitless communication
● Implemented software posted interrupt based on ELI 

(Exitless interupts)

- ELI will be very hard to upstream

● Possible replacements

-  KVM PV EOI introduced by Michael S. Tsirkin

– - INTEL VT-d Posted-interrupts (PI) which may be 
leveraged
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Upstreaming..
● A lot of new ideas!

● First Step

– - Stabilize a next generation vhost design.

● The plan:

– - Introduce a shared vhost design and run benchmarks with 
different configurations

● - RFC posted upstream
● - Initial test results favorable

● Later enhancements can be introduced gradually...

–
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Cgroups (Buzzwords, JK ;))

● Initial approach

– - Add a function to search all cgroups in all 
hierarchies for the new process.

– - Even a single mismatch => create a new vhost 
worker.

● But..

– - What happens when a VM process is migrated 
to a different cgroup ?

– - Can we optimize the cgroup search ?

– - What happens if use polling?

– - Rethink cgroups integration ?

–
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Cgroups and polling
● Can a vhost polling thread poll guests with missmatching 

cgoups? 

– - Yes,  but it will require the polling thread to take into 
account cgroup state of the guest.

● Probably requires a deeper integration of vhost and cgroups

–

–
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Workqueues (cmwq) (Even more sharing!)

● Can we use concurrency managed workqueues ?

● NUMA awareness comes free!

● But wait, what about cgroups ?

– - No cgroups support (at least yet, WIP)

● Less code to manage, less bugs.

● Cons-

– - Minimal control once work enters the workqueue

– - Again, no cgroups support :(

–

–
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Results
● ELVIS results

– - A little old but significant

– - Includes testing for Exit Less Interrupts, Polling

● - Valuable data for future work 
● Setup

– - Linux Kernel 3.1

– - IBM System x3550 M4, two 8-cores sockets of Intel Xeon E5-2660, 2.2 GHz, 56GB RAM

– and with an Intel x520 dual port 10Gbps

– - QEMU 0.14

● Results showing the performance impact of the different components of ELVIS

– - Throughput: Netperf TCP stream w. 64 byte messages

– - Latency: Netperf UDP RR
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Results – Components of ELVIS 
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Even more Results
● New results with RFC patches

– - Two systems with Xeon E5-2640 v3

– - Point to point network connection

– - Netperf TCP throughput (STREAM & MAERTS)

– - Netperf TCP Request Response
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Results
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Results
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So, ship it ?!
● Not yet :)

● Slowly making progress towards a acceptable solution

● Scope for a lot of interesting work

 Questions/Comments/Suggestions ?
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Backup
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ELVIS missing piece
● Polling on the physical NIC

- It may be possible to use low-latency Ethernet device 
polling introduced in kernel 3.11

● * I have an ELVIS version polling the physical NIC that 
 is not using this patch
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Results – Performance (Netperf)
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Results – Performance (Netperf)

● Different message sizes require different number of IO cores
● Using sidecores is beneficial in a wide range of message sizes
● The number of VMs “doesn't matter” for throughput
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Results – Performance (Netperf UDP RR)

● One I/O side core is not enough, two is needed
● sidecore performs up to x1.5 better then Baseline
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Results – Performance (memcached)

● One I/O side core is not enough, two is needed
● sidecore performs up to > x2 better then Baseline
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Results – Performance (apachebench)

● One I/O side core is not enough, two is needed
● sidecore performs up to x2 better then Baseline
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