
Introduction to System z Architecture KVM Forum 2013 2013/10/211

Introduction to System z
Architecture

Jens Freimann – jfrei@linux.vnet.ibm.com
KVM on System z
IBM Linux Technology Center
IBM Deutschland Research & Development GmbH

2013-10-21

Introduction to System z Architecture KVM Forum 2013 2013/10/212

About me

● At IBM for the last 5 ½ years

● 4 years in System z I/O Firmware

● 1 ½ years working on QEMU and KVM

Introduction to System z Architecture KVM Forum 2013 2013/10/213

About us
KVM/QEMU on S390 team

in Germany

Christian Bornträger Cornelia Huck Heinz Graalfs Thomas Huth

Dominik Dingel Jens Freimann Michael Müller

Introduction to System z Architecture KVM Forum 2013 2013/10/214

Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned

Introduction to System z Architecture KVM Forum 2013 2013/10/215

Hardware

Introduction to System z Architecture KVM Forum 2013 2013/10/216

17 years later...

Introduction to System z Architecture KVM Forum 2013 2013/10/217

Hardware today

Introduction to System z Architecture KVM Forum 2013 2013/10/218

Processor book

MCM

Memory

Memory

I/O Fanout

Power supplies

Introduction to System z Architecture KVM Forum 2013 2013/10/219

MCM, PU, core

@5.5 GHz

Introduction to System z Architecture KVM Forum 2013 2013/10/2110

MCM, PU, core

@5.5 GHz

Introduction to System z Architecture KVM Forum 2013 2013/10/2111

No need for liquid nitrogen :)

Introduction to System z Architecture KVM Forum 2013 2013/10/2112

Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned

Introduction to System z Architecture KVM Forum 2013 2013/10/2113

Memory
● System z is a Big-Endian machine
● Storage in z/Architecture means Memory(!)

– zEC12: 3.75 TB max

Adressing
● Types of addresses:
● Virtual: Translated by dynamic address translation (DAT) to real addresses
● Real: Translated to absolute addresses using the prefix register
● Absolute: After applying the prefix register
● Logical: The address seen by the program (this can either be a virtual or a

real address))
● Physical: translated to absolute addresses by the Config Array

Introduction to System z Architecture KVM Forum 2013 2013/10/2114

Memory
Address types

absolute address real address virtual address

DAT tables

Apply prefix
register

Introduction to System z Architecture KVM Forum 2013 2013/10/2115

Storage keys

● No equivalent in x86
● One of four storage-protection mechanisms defined in

z/Architecture
● Storage (memory) protection mechanism

– Key-controlled protection
– Associated with each 4K-byte block of real

storage.
– Program runs with storage key set in PSW

● ACC = access-control bits
● F = fetch-protection bit
● R = reference bit
● C = change bit

Introduction to System z Architecture KVM Forum 2013 2013/10/2116

Storage keys

0 R 0 0 0 T I E PSW
key

0 M W P AS CC Program
mask

R
I

0 0 0 0 0 0 E
A

0 6 7 1
3

20-24 31

B
A

0 0

32 63

Bits 0-31 of Instruction Address

64 95

Program-Status Word

 ...

Acc | F | R | C

Acc | F | R | C

 ...

 ...

Page 3

Page 4

 ...

Bits 32-63 of Instruction Address

96 127

compare

Introduction to System z Architecture KVM Forum 2013 2013/10/2117

Storage keys (cont.)

 → How to do migration of Storage keys efficiently?
 They are a separate entity besides memory, needs
 to be tracked

 Model storage keys as device?
● Would provide hook to trigger migration

 Keep it in a separate MemoryRegion?
● Subregion of RAM?
● More similar to real System

Introduction to System z Architecture KVM Forum 2013 2013/10/2118

Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned

Introduction to System z Architecture KVM Forum 2013 2013/10/2119

Interrupts
prerequisite: Prefixing

● No equivalent on x86
● Map range of real addresses 0-8191 to a

different block in absolute storage for each CPU

● Each CPU is assigned a private memory area of
8 KB, called prefix area

– contains data critical to system operation,
e.g. interrupt processing

– other names: fixed storage locations, low
core

Introduction to System z Architecture KVM Forum 2013 2013/10/2120

Interrupts
prerequisite: Prefixing

Introduction to System z Architecture KVM Forum 2013 2013/10/2121

Interrupts

● There are six classes of interrupts:
– Supervisor call
– Program
– Machine check
– External
– Input/output
– Restart

● Each class is associated with a pair of old/new
PSWs in the assigned storage locations

Introduction to System z Architecture KVM Forum 2013 2013/10/2122

Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status
pending,
generate I/O IRQ

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register

Introduction to System z Architecture KVM Forum 2013 2013/10/2123

Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status
pending,
generate I/O IRQ 2. Store current

 PSW into
 lowcore field
 I/O old PSW

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register

Introduction to System z Architecture KVM Forum 2013 2013/10/2124

Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status
pending,
generate I/O IRQ 2. Store current

 PSW into
 lowcore field
 I/O old PSW

3. load I/O new
PSW (irq handler)

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register

Introduction to System z Architecture KVM Forum 2013 2013/10/2125

Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status
pending,
generate I/O IRQ 2. Store current

 PSW into
 lowcore field
 I/O old PSW

3. load I/O new
PSW (irq handler)

Current PSW

Lowcore

4. run I/O irq handler
 Use I/O interrupt information
 in lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register

Introduction to System z Architecture KVM Forum 2013 2013/10/2126

Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status
pending,
generate I/O IRQ 2. Store current

 PSW into
 lowcore field
 I/O old PSW

3. load I/O new
PSW (irq handler)

Current PSW

Lowcore

4. run I/O irq handler
 Use I/O interrupt information
 in lowcore

5. restore
 old PSW

* registers are saved/restored by software (OS)

(like Program counter + status register

Introduction to System z Architecture KVM Forum 2013 2013/10/2127

PSWs in the Assigned
Storage Locations

Real addresses Contents

0x120 - 0x012F Restart old PSW

0x130 - 0x013F External old PSW

0x140 - 0x014F Supervisor-call old PSW

0x150 - 0x015F Program old PSW

0x160 - 0x016F Machine-check old PSW

0x170 - 0x017F I/O old PSW

0x1A0 - 0x01AF Restart new PSW

0x1B0 - 0x01BF External new PSW

0x1C0 - 0x1CF Supervisor-call new PSW

0x1D0 - 0x1DF Program new PSW

0x1E0 - 0x01EF Machine-check new PSW

0x1F0 - 0x01FF I/O new PSW

Introduction to System z Architecture KVM Forum 2013 2013/10/2128

Interrupt Masking

● In z/Architecture masking is done via bits in PSW and in
Control registers

CR6

0 R 0 0 0 T I E PSW
key

0 M W P AS CC Program
mask

R
I

0 0 0 0 0 0 E
A

0 6 7 1
3

20-24 31

B
A

0 0

32 63

Bits 0-31 of Instruction Address

64 95

Bits 32-63 of Instruction Address

96 127

I/O
32-39

CR0

Ext
48-59

Program-Status Word

CR14

M
36-39

CR1 Bit 57 Primary space-switch-event control

CR13 Bit 57 Home space-switch-event control

Introduction to System z Architecture KVM Forum 2013 2013/10/2129

Interrupt Masking (cont.)

● There is no masking for
– Supervisor calls (SVCs)

● The whole purpose of the SUPERVISOR CALL instruction is
to invoke the supervisor via the interrupt mechanism

– Restart
● SIGNAL PROCESSOR instruction, typically issued by

the operating system during startup
● Manual operation available from the support

element (SE) intended to restart the operating
system

– Exigent machine checks
● If PSW.13 is 0, the CPU check stops. An example of such a

situation is instruction processing damage.

Introduction to System z Architecture KVM Forum 2013 2013/10/2130

Updates regarding I/O

● Adapter interrupts
– per Interruption Subclass (ISC)
– Lightweight compared to classic I/O interrupts

Classic I/O interrupts Adapter interrupts

1. Get interrupt information
 from lowcore

2. Test subchannel (tsch)

3. find indicator bit

1. Get interrupt information
 from lowcore

2. find indicator bit

Introduction to System z Architecture KVM Forum 2013 2013/10/2131

Updates regarding I/O

● Adapter interrupts
– per Interruption Subclass (ISC)
– Lightweight compared to classic I/O interrupts

Classic I/O interrupts Adapter interrupts

1. Get interrupt information
 from lowcore

2. Test subchannel (tsch)

3. find indicator bit

1. Get interrupt information
 from lowcore

2. find indicator bit

Introduction to System z Architecture KVM Forum 2013 2013/10/2132

Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned

Introduction to System z Architecture KVM Forum 2013 2013/10/2133

Lessons learned
A brief history of

KVM on S390

● Built own userspace “kuli”, which was not an
emulator but a small and simple driver for KVM

● KVM code was built to fit into kuli design

● Long pause in KVM on System z development

● Decision to go for QEMU as preferred
userspace. Needed to adapt to QEMU
“thinking”. Still learning...

Introduction to System z Architecture KVM Forum 2013 2013/10/2134

Lessons learned

● Having only one single KVM exit reason turned
out to be a bad idea

– Need to sync everything all the time

– X86 with multiple exit reasons has it easier

– Introduced separate exit for “test subchannel”

Introduction to System z Architecture KVM Forum 2013 2013/10/2135

Lessons learned (cont.)

● Worksplit between KVM and userspace caused
us some headache

– Example: reset/diag 308 where we reset
some parts in KVM and others in QEMU

– QEMUs “school of thinking” that all state is
kept in userspace makes sense

Introduction to System z Architecture KVM Forum 2013 2013/10/2136

Lessons learned (cont.)

● Keeping number of running CPUs in a global
variable

– When last CPU is stopped, shutdown guest

– How to model this in a better way?

Introduction to System z Architecture KVM Forum 2013 2013/10/2137

Thank you!

Thanks to Joachim von Buttlar for
borrowing me some of his slides

Introduction to System z Architecture KVM Forum 2013 2013/10/2138

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

IBM, IBM(logo), z/Architecture, zSeries, Enterprise Systems
Architecture/390, ESA/390, Enterprise Systems
Architecture/370, ESA/370 and System/360 are trademarks
and/or registered trademarks of International Business
Machines Corporation in the United States, other countries, or
both.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be
trademarks or service marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

