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About me

● At IBM for the last 5 ½ years

● 4 years in System z I/O Firmware

● 1 ½ years working on QEMU and KVM
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Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned
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Hardware
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17 years later...
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Hardware today 
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Processor book

MCM

Memory

Memory

I/O Fanout

Power supplies
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MCM, PU, core

@5.5 GHz
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MCM, PU, core

@5.5 GHz
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No need for liquid nitrogen :)
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Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned
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Memory
● System z is a Big-Endian machine
● Storage in z/Architecture means Memory(!)

– zEC12:  3.75 TB max

Adressing
● Types of addresses:
● Virtual: Translated by dynamic address translation (DAT) to real addresses
● Real: Translated to absolute addresses using the prefix register
● Absolute: After applying the prefix register
● Logical: The address seen by the program (this can either be a virtual or a 

real address))
● Physical: translated to absolute addresses by the Config Array
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Memory
Address types

absolute address real address virtual address

DAT tables

Apply prefix
register



Introduction to System z Architecture                KVM Forum 2013             2013/10/2115

Storage keys

● No equivalent in x86
● One of four storage-protection mechanisms defined in 

z/Architecture
● Storage (memory) protection mechanism

– Key-controlled protection
– Associated with each 4K-byte block of real 

storage.
– Program runs with storage key set in PSW 

● ACC = access-control bits
● F = fetch-protection bit
● R = reference bit
● C = change bit
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Storage keys

0 R 0 0 0 T I E PSW 
key

0 M W P AS CC Program
mask
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Storage keys (cont.)

 → How to do migration of Storage keys efficiently?  
    They are a separate entity besides memory, needs 
    to be tracked 

  Model storage keys as device?
● Would provide hook to trigger migration 

  Keep it in a separate MemoryRegion?
● Subregion of RAM?
● More similar to real System
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Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned
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Interrupts
prerequisite: Prefixing

● No equivalent on x86
● Map range of real addresses 0-8191 to a 

different block in absolute storage for each CPU

● Each CPU is assigned a private memory area of 
8 KB, called prefix area

– contains data critical to system operation, 
e.g. interrupt processing

– other names: fixed storage locations, low 
core
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Interrupts
prerequisite: Prefixing
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Interrupts

● There are six classes of interrupts:
– Supervisor call 
– Program
– Machine check
– External
– Input/output
– Restart

● Each class is associated with a pair of old/new 
PSWs in the assigned storage locations
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Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status 
pending, 
generate I/O IRQ

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register
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Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status 
pending, 
generate I/O IRQ 2. Store current     

    PSW into   
    lowcore field  
    I/O old PSW

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register
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Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status 
pending, 
generate I/O IRQ 2. Store current     

    PSW into   
    lowcore field  
    I/O old PSW

3. load I/O new 
PSW (irq handler)

Current PSW

Lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register
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Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status 
pending, 
generate I/O IRQ 2. Store current     

    PSW into   
    lowcore field  
    I/O old PSW

3. load I/O new 
PSW (irq handler)

Current PSW

Lowcore

4. run I/O irq handler
    Use I/O interrupt information 
    in lowcore

* registers are saved/restored by software (OS)

(like Program counter + status register
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Interrupt Action
(example I/O interrupt)

...
0x170 I/O old PSW

...

0x1F0 I/O new PSW

...

1. subchannel status 
pending, 
generate I/O IRQ 2. Store current     

    PSW into   
    lowcore field  
    I/O old PSW

3. load I/O new 
PSW (irq handler)

Current PSW

Lowcore

4. run I/O irq handler
    Use I/O interrupt information 
    in lowcore

5. restore 
    old PSW

* registers are saved/restored by software (OS)

(like Program counter + status register
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PSWs in the Assigned 
Storage Locations

Real addresses Contents

0x120 - 0x012F Restart old PSW

0x130 - 0x013F External old PSW

0x140 - 0x014F Supervisor-call old PSW

0x150 - 0x015F Program old PSW

0x160 - 0x016F Machine-check old PSW

0x170 - 0x017F I/O old PSW

0x1A0 - 0x01AF Restart new PSW

0x1B0 - 0x01BF External new PSW

0x1C0 - 0x1CF Supervisor-call new PSW

0x1D0 - 0x1DF Program new PSW

0x1E0 - 0x01EF Machine-check new PSW

0x1F0 - 0x01FF I/O new PSW



Introduction to System z Architecture                KVM Forum 2013             2013/10/2128

Interrupt Masking

● In z/Architecture masking is done via bits in PSW and in 
Control registers  

CR6

0 R 0 0 0 T I E PSW 
key

0 M W P AS CC Program
mask

R
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0 6 7 1
3
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B
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 63

Bits 0-31 of Instruction Address

64 95

Bits 32-63 of Instruction Address

96 127

I/O
32-39

CR0

Ext
48-59

Program-Status Word

CR14

M
36-39

CR1 Bit 57 Primary space-switch-event control

CR13 Bit 57 Home space-switch-event control
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Interrupt Masking (cont.)

● There is no masking for
– Supervisor calls (SVCs)

● The whole purpose of the SUPERVISOR CALL instruction is 
to invoke the supervisor via the interrupt mechanism

– Restart
● SIGNAL PROCESSOR instruction, typically issued by 

the operating system during startup
● Manual operation available from the support 

element (SE) intended to restart the operating 
system

– Exigent machine checks
● If PSW.13 is 0, the CPU check stops. An example of such a 

situation is instruction processing damage.
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Updates regarding I/O 

● Adapter interrupts
– per Interruption Subclass (ISC)
– Lightweight compared to classic I/O interrupts

Classic I/O interrupts Adapter interrupts

1. Get interrupt information
    from lowcore

2. Test subchannel (tsch)

3. find indicator bit

1. Get interrupt information
    from lowcore

2. find indicator bit
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Introduction to System z

● System z Architecture
– Hardware
– Memory
– Interrupts

● Lessons learned
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Lessons learned
A brief history of 

KVM on S390

● Built own userspace “kuli”, which was not an 
emulator but a small and simple driver for KVM

● KVM code was built to fit into kuli design

● Long pause in KVM on System z development

● Decision to go for QEMU as preferred 
userspace. Needed to adapt to QEMU 
“thinking”. Still learning...
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Lessons learned

● Having only one single KVM exit reason turned 
out to be a bad idea

– Need to sync everything all the time

– X86 with multiple exit reasons has it easier

– Introduced separate exit for “test subchannel”
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Lessons learned (cont.)

● Worksplit between KVM and userspace caused 
us some headache

– Example: reset/diag 308 where we reset 
some parts in KVM and others in QEMU

– QEMUs “school of thinking” that all state is 
kept in userspace makes sense
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Lessons learned (cont.)

● Keeping number of running CPUs in a global 
variable

– When last CPU is stopped, shutdown guest

– How to model this in a better way?
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Thank you!

Thanks to Joachim von Buttlar for 
borrowing me some of his slides
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Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

IBM, IBM(logo), z/Architecture, zSeries, Enterprise Systems 
Architecture/390, ESA/390, Enterprise Systems 
Architecture/370, ESA/370 and System/360 are trademarks 
and/or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or 
both.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be 
trademarks or service marks of others.
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