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Virtualization vs. Nested Virtualization  

• Single-Layer 

Virtualization

• Multi-Layer (Nested) 

Virtualization

2

HW Platform

VMM

Virtual Platform

(L0) HW Platform

(L0) VMM

(L1) Virtual Platform

(L1) VMM

(L2) Virtual Platform



Software & Services Group

Challenge of Nested Virtualization

• Ideal virtualization model:

– The Virtual Platform is exactly the same as the real 

hardware platform, except for timing/performance.

– However, commercial VMM typically presents only a 

subset of hardware features in the virtual platform

• Enough to accommodate commercial OS

• But can’t run the VMM inside � No nested virtualization

– KVM/Xen/Vmware/Hyper-V are all examples

• Challenges of nested virtualization:

– Present full underlying hardware features to the virtual 

platform efficiently, such as VMX, EPT.
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Nested Virtualization: Virtual VMX

• Virtual VMX • Significant virtualization 

overhead was observed 

due to shadow page fault 

in L1 VMM

– Kernel build in L2 guest is 

only 1/3 of L1 guest
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Nested Virtualization: Virtual EPT

• Shadow-like virtual EPT
– Write-protection guest EPT table

• Update sEPT when gEPT 

changes

– Directly invept of guest

– May suffer from global lock

• VTLB-like virtual EPT
– No write-protection to gEPT

– Trap-and-emulate guest INVEPT

• Updating sEPT when cached 

mappings may (?) be changed

– Better SMP scalability (Preferred)
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Performance Challenges

• L1 VMM VMCS register access is trapped-and-

emulated by L0 VMM

– An L1 VM exit may trigger tens of VMCS access, 

which is trapped-and-emulated by L0 VMM

– Emulation of INVEPT is extremely expensive

• The entire sEPT has to be re-generated ☺

• Reducing the frequency of L1 VM exit is key

– Virtual EPT significantly improves performance

– Virtual VT-d etc.

– Nested virtualization friendly guest
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Optimizations

• Minimize the frequency of L1 VM exit

– Build as possible as static guest EPT table

– Mitigate the host swap activity in L1 VMM

– Cross-layer I/O para-virtualization

• Accelerate handling of virtual VM exit

– Minimize privilege resource access per virtual VM exit

• Such as VMCS access

– Avoid unnecessary INVEPT

– Choose efficient operands
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Pre-build vs. On-demand EPT

• On-demand build of EPT hurts nested 

virtualization

– KVM sets up EPT table on demand so far

– Page age checking of LRU zaps EPT entry
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A command line option for static EPT ?A command line option for static EPT ?
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Mitigate the Host Swap Activity

• Virtual host swap is expensive in L1 VMM

– It may generate up to ~4K/s EPT table modification

– Emulation of INVEPT has to zap and rebuilt the entire 

shadow EPT table in vTLB-like virtual EPT

• L0 VMM may defer part of the shadow EPT rebuilt effort
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Retain host swap in L0 VMM rather than L1 VMM by 

presenting enough pseudo memory to L1 guest

Retain host swap in L0 VMM rather than L1 VMM by 

presenting enough pseudo memory to L1 guest
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Cross-Layer I/O Paravirualization

• Backend service from L1 may 

trigger tremendous VM exit to 

L0

• Can L0 directly service L2 I/O ?

– Network is stateless

– Cooperation between L1/L2 BE
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Accelerate Handling of Virtual VM exit

• # of privilege resource (VMCS) access in virtual 

VM exit handler (top 3)

11

Extending cache_reg to efficiently reduce average VMCS access # !Extending cache_reg to efficiently reduce average VMCS access # !
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Avoid Unnecessary INVEPT

• Emulation of INVEPT in vTLB-like virtual EPT 

implementation has to remove the entire sEPT 

table

– Extreme heavy cost ☺
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INVEPT During Qemu BuildINVEPT During Qemu BuildINVEPT During Qemu BuildINVEPT During Qemu Build
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Efficient Operands in VMCS 

Access
• Register operands can be easily emulated by L0 

VMM, while memory operand is expansive

– Access of L1 memory needs additional map and un-

map in L0 VMM
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So far KVM uses register operand for VMCS 

read/write, keep the good behavior ☺

So far KVM uses register operand for VMCS 

read/write, keep the good behavior ☺
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Performance Status
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