

Siemens Corporate Technology | August 2015

Real-Time KVM for the Masses

Real-Time KVM for the Masses

Agenda

Motivation & requirements

Reference architecture

Compute node setup

Open Stack adaptions

Summary & outlook

Jan Kiszka, Corporate Technology

Real-Time Virtualization Drivers

- Communication systems
 (media streaming & switching, etc.)
- Trading systems
 (stocks, goods, etc.)
- Control systems

 (industry, healthcare, transportation, etc.)
- => Consolidation
- => Hardware standardization
- => Simpler maintenance
- => Fast fail-over

Real-Time KVM is working!

Can I have it in the cloud?

Real-Time Clouds? No Problem!

Oh, you wanna do I/O as well...

Page 5

Real-Time Connectivity Required

Realistic Deployments

Requirement: Fast enough links to close loops in time

- Data acquisition (physical world input)
- Transfer to VM
- Data processing (← in VM on RT-KVM)
- Transfer back
- Data application (physical world output)

That means

- Private cloud / data center / server cluster close to physical process
- RT VMs will require access to special networks
 - Isolated standard networks
 - Real-time Ethernets
 - Field buses

Confining the Real-Time Scope

- No QEMU in the loop (feasible but much harder)
- No RT disks (no use case yet, non-deterministic backends)
- I/O via Ethernet (common denominator)
- No device pass-through (feasible but complex)
- No live migration while RT-operational (out of reach so far)
- The reduced RT bill of material
 - RT CPUs
 - RT network

Management Layers

- Moving from the lab...
 - Hand-crafted deployments & starter scripts
 - Individual hosts
 - Some dozen VMs per host
- ...into the data center
 - Hundreds of VMs, both RT and non-RT
 - Many networks, also both RT and non-RT
 - Flexible management and accounting models
- Cloud-grade, RT-capable managements stack required => OpenStack

Jan Kiszka, Corporate Technology

- Broadly used for private clouds
- Good integration with KVM

Reference Architecture

Real-Time Network Access

Options

- Emulation
- Pass-through
- Para-virtual devices => virtio

Need for RT data plane

- vhost-net: in host kernel
- <u>vhost-user</u>: in separate userspace process

vhost-user enables more RT tuning

- DPDK-based switch/router
- Aggressive polling on interfaces, less event signaling
- Only irqfd (eventfd) from vhost process to vCPU thread

Reference Architecture (with Networking)

Compute Node Setup

PREEMPT-RT as host kernel

- Configuration and tuning according to https://rt.wiki.kernel.org
- Tune power management at kernel and also BIOS-level
- See also Rik van Riel's slides (KVM Forum 2015)
- Set up isolcpus for 2 sets
 - vCPU threads
 - RT switch data plane threads
- Sufficient non-isolated CPUs required
 - Management processes & threads
 - QEMU event threads
- We use rcu_nocbs == isolcpus so far
 (but not nohz_full found no relevant impact on worst-case latency)

Compute Node Setup (2)

- Think about RT thread throttling
 - /proc/sys/kernel/sched rt period us /proc/sys/kernel/sched rt runtime us
 - May suspend busy RT guests
 - But infinitely looping RT guests can starve the host!
- isolcpus does not affect IRQ affinities
 - Needs fine tuning via script and/or irgbalanced
- **Even more tuning feasible...**
 - But... do your guests need really this?

Page 14

Simplifying the Setup

Bad news: Still lots of tuning...

Good news: Can be replicated to similar hosts

Better news: There is a tooling framework!

https://github.com/OpenEneaLinux/rt-tools.git

partrt - Create real time CPU partitions on SMP Linux

```
Usage:
partrt [options] <cmd>
partrt [options] create [cmd-options] [cpumask]
partrt [options] undo [cmd-options]
partrt [options] run [cmd-options]  command>
partrt [options] move [cmd-options] <pid> <partition>
partrt [options] list [cmd-options]
```

- Uses cgroups + various tricks, avoids isolcpus (=> no reboot)
- Pending full evaluation, seems reusable so far

RT-KVM Control via libvirt

- libvirt only executing higher layers' commands, no own policies
- All required controls upstream since 1.2.13
- For RT-vCPUs
 - Pinning
 - Scheduling parameters setting (policy, priority)
 - Memory locking

For RT networks

- QEMU settings to allow sharing of guest RAM with vhost-user process
- Connecting VM NICs to specific vhost-user ports (identification via socket path)

OpenStack Support for Real-Time – Nova Compute

Several pieces already available

- vCPU pinning
- pCPU dedication

- RT Blueprint under discussion (https://review.openstack.org/#/c/139688)
 - Introduces flavor property hw:cpu_realtime
 - Allows tagging of instances and images
 - Requires hw:cpu policy = dedicated
 - Selects
 - QEMU memory locking
 - vCPU thread policy & priority tuning

Deficits

- Hard-coded and inappropriate policy/priority (RR, prio 1)
- 2nd CPU mask required to differentiate between RT and non-RT pCPUs

Real-Time Nova Compute Status

Patches by Sahid Ferdjaoui, Red Hat

- https://review.openstack.org/#/q/status:open+project:openstack/ nova+branch:master+topic:bp/libvirt-real-time,n,z
- Implements current blueprint over git master
- Not accepted for Liberty
 - Blueprint needs to be merged first but window already closed
 - New target: Mitaka
- Currently integrating Sahid's patches into our deployment
 - Plan to come up with extensions to blueprint and code

OpenStack Support for Real-Time – Neutron Networking

- If Neutron shall manage IP assignment for RT networks all done
- But RT networks tend to be special
 - Network addresses managed by guests or externally
 - Possibly no TCP/IP at all
 - => new network type required
- Neutron patches work in progress @Siemens
 - Introduce "unmanaged" networks (IP-free, no DHCP, ...)
 - Agents on compute nodes will report connectivity (availability of specific physical networks)

Results?

Summary & Outlook

- Simplify real-time for data centers & similar setups
 - Standardize setup of basic RT scenarios
 - Make RT VMs manageable and accountable
- Full RT stack of KVM & OpenStack feasible
 - Baseline: PREEMPT-RT
 - Standard QEMU & libvirt
 - Patches for Nova and Neutron required
 - Compute node tuning remains improvable
- **Future work**
 - RT PCI device assignment (challenge: IRQ management)
 - Compute node setup using rt-tools/partrt
 - RT device emulation (requires reworked QEMU patches)

Any Questions?

Thank you!

Jan Kiszka <jan.kiszka@siemens.com>