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Migration design / policy Problems

 Admins want to evacuate any size VMs
- Tens of GB / Hundreds of GB
- Arbitrary storage configurations
- Arbitrary processor configurations
* Management software is still pretty blind:
- Is VM idle?
- Busy?
Full of zeros?
~* Mission Cnucal'? e
System softWare wants our Cake




* Customers don’t (yet) want to re-architect
- Just make my “really big JVM” or my “honking DBMS” run
Don’t ask me any questions about the workload
But willing to tell you “high-level” workload characteristicg
Co-workers keep telling me security is important,
probably don’t want any “extreme” visibility anyway

* Customers do *want* high availability

But they don’t really trust us (much)
They think we’re really good at running workloads
Not so sure we’re good at *moving* workloads

Also don’t want to re-architect
Don’t want to put all their eggs in one basket
- Still very Wllhng to spend money on mainframes

= “PaaS” not a panacea but has the pOtentlal to be




State of the art

* Migration: 40 Gbps *ethernet* hardware already ¢

market
- Faster ones not far away
- Can we do TCP @ 40 Gbps?
- Sure, at 100% CPU - that’s not good

* Fault Tolerance: @
- A.K.A: Micro-Checkpointing / Continuous Replication
- Multiple hypervisors are 1ntroduc1ng it:
' ~ Remus on Xen -
NMWaredockstep - _—
"j_'“ Marathon/ Stratus EverRun i
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RDMA usage:
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but proven technology
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. Time - seconds

Migration and VM stop times as a function of migration method: VM is running SPEC CPU2006 benchmark gobmk --
rate 10; migrated @ 1.5minutes; approx 700MB VM footprint; VM --smp 2 --mem 3072

?Eltotal migration time ® VM stop time

72 17

100.0

10.0

27

15




Protected Failover Failover
DB Server VM 2 App Server VM DB Server VM

Asy onous
Micro-checkpoi
+ 1/O buffering




* Sub-millisecond-FT requires consistent I/O

Outbound network must be buffered
Outbound storage must be mirrored

°
~
-
s’

* Expensive Identification of dirty memory
- Multiple KVM log_dirty calls => QEMU bitmap
Multiple QEMU bitmaps => QEMU bytemap

Bytemap used by VGA? PCI? Others?
Bytemap => single bitmap
Stream through bitmap

* 60 mllllseconds to 1dent1fy dlrty memory on a 16GBI--_--1’ -  .5;_ -
Vm' Ahhhhh" - =




Checkpointing (MC) ?

Protected VM

virtio-frontend

MC- Checkpoints (TCP or RDMA)
Vhost
Einux l thread
Bypass
Virtio-backend R

i MC
Vhost-back r | K] ] . Buffer
(optional) Tap-device Con trol | |
| | - Signals. - -~ =

sm confidef OpPTIWare Bridge




Micro-Checkpointing “barometer”: where do the costs come from?
Average checkpoint size < 5MB

~ Normal .bytemap prep




1

* Very “sensitive” topic =)
* Myth: Sub-second, sub-working-set over-commitment X
- Reality: Sub-day, sub-hour, working set \V/ '\
- growth and contraction )
* RDMA Migration:
~ Overcommit on both sides of connection?

~ Again: Does your management software know anything?
- Lots of zero pages? VM is idle? Critical?
- Why can’t our management software have APIs that libvirt can share?
Or maybe OpenStack can share?
- Does policy engine know when to use RDMA’?
. RDMA Fault Tolerance° | - S, 52 CranE el e
checkpomts arbltrary m 51ze deuble the VM 1n the worst case o




You (or your policy management) is dealing with a
*known* memory bound workload that doesn’t converge
with TCP

* Migration Time = O(dirty rate)
' Where Dirty rate > TCP bandwidth
~* You have sufficient available free memory on the
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1.Your workload can already survive restart
2.Your crashes are caused by *guest* bugs not host bugs or

hardware failures
3.Your workload is stateless
- 4.Your workload cannot tolerate poor /O
~ 5.You’re customer is willing to tightly integrate with the

o9y

lly 0
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le operations

1
Translate

* QEMUF

into IB Send/Recv messages
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* Checkpoint size = O(2 * RAM), worst case
- Cannot allow QEMU to hog that much RAM
- Cannot register that much with RDMA anyway

* Solution:
- Splitup checkpoint into ‘slabs’ (~5MB each
- Grow and evict slabs as needed
- Register slabs as they are needed

\\ 1y
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* Plan is to active QEMU ¢‘drive-mirror’
~ ‘drive-mirror’ would also need to be RDMA-capable
- Local I/0 blocks go to disk unfettered

0

* Mirrored blocks:
* Held until checkpoint complete,
- then released

“ This was chosen over shared storage
F IMance redasons

otr-implem en
F‘._ stc ora g e




Drive-mirror + MC

lEMU

Backup VM
virtio-frontend

Protected VM
virtio-frontend

4 or RDMA)
MC- |

Virtio-backend thread Virtio-b&ckend

MC Buffer
Control

Mirrored
writes

%rive-mirror Drive-mirror
(Direct }/Os) : (Buffered 1/0s)

writes | Linuk / KVM

Local Storage Local Storage









Workflow

Controller Node

* Challenges:
* REST command doeq not return after $>./cb vmprotect
. FT is initiated => perfnanent thread .
must get kicked o $ > nova migrate
Openstack has no foncept (yet) of
VM Lifecycle magagement or Failure
* Openstack would plso need

1
* storage-level compatibility with Messa;g— —evet

Service Compute

' our FT storage apgroach

* Who owns storage after failure?

' How recalculate cluster resources?
' How to keep mysql consistent?

Compute Node 1 Compute Node 2

Nova- Ao Nova-
Compute SRt S e compute

Libvirt

Mesgaging S [Messaging
Service Y : Servici
1 % Failure?

Protected Failover
QEMU QEMU




Sender

1-b) Insert 1/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

S 10 b) Recelve ACK

' "Barrler A

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of check_poiht




checkpoint

Sender
1-b) Insert 1/O barrier A

2) Stop virtual machine
3) Capture checkpoint
4) Insert 1/O Barrier B
5) Resume virtual machine

6) Transmit Checkpoint

10b)Rece|veACK e

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




I

1-b) Insert 1/O barrier A

Sender

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

10b)Rece|veACK e

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




I

1-b) Insert 1/O barrier A

Sender

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

_ 10-b)ReceiveACK |

Receive

VM running

VM not running

VM running

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




checkpoint

Sender Receive

1-b) Insert 1/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

11) Release 0
BarrierA

10b)Rece|veACK e

VM running

VM not running

VM running

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht
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