ines

.

Igration an
RDMA Fault Tolerance

for QMU

el R

cha

1

4 mwh.ﬂ {
e
i

H_W..} L


mailto:mrhines@us.ibm.com
http://wiki.qemu.org/Features/RDMALiveMigration
http://wiki.qemu.org/Features/MicroCheckpointing

Migration design / policy Problems

 Admins want to evacuate any size VMs
- Tens of GB / Hundreds of GB
- Arbitrary storage configurations
- Arbitrary processor configurations
* Management software is still pretty blind:
- Is VM idle?
- Busy?
Full of zeros?
~* Mission Cnucal'? e
System softWare wants our Cake




* Customers don’t (yet) want to re-architect
- Just make my “really big JVM” or my “honking DBMS” run
Don’t ask me any questions about the workload
But willing to tell you “high-level” workload characteristicg
Co-workers keep telling me security is important,
probably don’t want any “extreme” visibility anyway

* Customers do *want* high availability

But they don’t really trust us (much)
They think we’re really good at running workloads
Not so sure we’re good at *moving* workloads

Also don’t want to re-architect
Don’t want to put all their eggs in one basket
- Still very Wllhng to spend money on mainframes

= “PaaS” not a panacea but has the pOtentlal to be




State of the art

* Migration: 40 Gbps *ethernet* hardware already ¢

market
- Faster ones not far away
- Can we do TCP @ 40 Gbps?
- Sure, at 100% CPU - that’s not good

* Fault Tolerance: @
- A.K.A: Micro-Checkpointing / Continuous Replication
- Multiple hypervisors are 1ntroduc1ng it:
' ~ Remus on Xen -
NMWaredockstep - _—
"j_'“ Marathon/ Stratus EverRun i




| servers

ICa

phys
N servers

t of
Izatio
for act

i
Ion

Ve S€

Smaller act
evacuate low ut

d rebalance when

ive servers

quires rapl

t
kes

liza
i

her uti
lower headroom re

workload sp

il

Hi

0
I

tion to

ine to load varia

IN energy use -
rs onl

idly adg.ust serve
presetve Sta- -

A decrease
rapi

I
i



- CPU Utilization - % of 1 core

400

300

200

| [{[1la
R ([
n:il".
MALL
£y

,l‘h
i’l‘ ) ’ll

!
i
v’




RDMA usage:

des

ind of useless

ike IPv6

|

tered on both s

Memory must be regis
Small RDMA transfers are k

i

i}

but proven technology
RDMA over Ethernet products from multiple Vendors

* QEMU
~ Avo

is 1
b

il

ing

IB programm
Necessary ev

o

users

ion — man

le abstract

the QEMUFil

n

chan

|

g

i

1



. Time - seconds

Migration and VM stop times as a function of migration method: VM is running SPEC CPU2006 benchmark gobmk --
rate 10; migrated @ 1.5minutes; approx 700MB VM footprint; VM --smp 2 --mem 3072

?Eltotal migration time ® VM stop time

72 17

100.0

10.0

27

15




Protected Failover Failover
DB Server VM 2 App Server VM DB Server VM

Asy onous
Micro-checkpoi
+ 1/O buffering




* Sub-millisecond-FT requires consistent I/O

Outbound network must be buffered
Outbound storage must be mirrored

°
~
-
s’

* Expensive Identification of dirty memory
- Multiple KVM log_dirty calls => QEMU bitmap
Multiple QEMU bitmaps => QEMU bytemap

Bytemap used by VGA? PCI? Others?
Bytemap => single bitmap
Stream through bitmap

* 60 mllllseconds to 1dent1fy dlrty memory on a 16GBI--_--1’ -  .5;_ -
Vm' Ahhhhh" - =




Checkpointing (MC) ?

Protected VM

virtio-frontend

MC- Checkpoints (TCP or RDMA)
Vhost
Einux l thread
Bypass
Virtio-backend R

i MC
Vhost-back r | K] ] . Buffer
(optional) Tap-device Con trol | |
| | - Signals. - -~ =

sm confidef OpPTIWare Bridge




Micro-Checkpointing “barometer”: where do the costs come from?
Average checkpoint size < 5MB

~ Normal .bytemap prep




1

* Very “sensitive” topic =)
* Myth: Sub-second, sub-working-set over-commitment X
- Reality: Sub-day, sub-hour, working set \V/ '\
- growth and contraction )
* RDMA Migration:
~ Overcommit on both sides of connection?

~ Again: Does your management software know anything?
- Lots of zero pages? VM is idle? Critical?
- Why can’t our management software have APIs that libvirt can share?
Or maybe OpenStack can share?
- Does policy engine know when to use RDMA’?
. RDMA Fault Tolerance° | - S, 52 CranE el e
checkpomts arbltrary m 51ze deuble the VM 1n the worst case o




You (or your policy management) is dealing with a
*known* memory bound workload that doesn’t converge
with TCP

* Migration Time = O(dirty rate)
' Where Dirty rate > TCP bandwidth
~* You have sufficient available free memory on the




ge AT

0
i

P

O

>

c

@)

O

higers

c

7]

D

@)

-

o 2 O

T

~2%8 8§

o L=
& _

2 o= QA

aosa:

o0 Oy

© ©0 | &

I meo___

?.eomm

emVJ.le

SETEE

=B e
o o

gl L

IR B o

urogk

O.WBY.IF

5 v 5 3

) G o

—; e

1
2
3




1S

dea what the workload

|

You have no

1

tant

)
o
a5
me
%m

n
£t
==
T 0
e
e sy
gy
oma
~
3
= O
e
D
> &
dt
o] 1
i )
AR
2 3

c
£ g
«Sw
o
FO) ey
6

[\

ical

t
ta

ission-cri

content is m
3.1/0 slow down

4.You

b

ig deal”

is no
ve high.

lab

must ha

i

il

avai




1.Your workload can already survive restart
2.Your crashes are caused by *guest* bugs not host bugs or

hardware failures
3.Your workload is stateless
- 4.Your workload cannot tolerate poor /O
~ 5.You’re customer is willing to tightly integrate with the

o9y

lly 0




*before*

) a.
B
(et
o m e
) @) .zzll..
S o = .
o 1 et
wn = m | (A=
Al o pu— a -
PN 9p)] o poeacf i C
B o o qe} n ) d
M 2] B =) (o
< S d S S
B it
,t.
B S = _ Lw
T 24 EEE 25
£ 0O L dag
= 4o O oy I
7 YR (G Wi : | s m s
Loudaf=g
W U v 9 (3 s ._... ._
o Yol =B
e Beg g ol O B
o TR B = e
A SR P
A Q Al o s B e S e
Qo ¥ oo D= @
M W W a4z =t a oG T
% = S
() @ B (e
xZ = =T E
5 me

U < <0 __



le operations

1
Translate

* QEMUF

into IB Send/Recv messages

i

’

-
~~
Q
D
[t 2N
o o
g Nl 1
i
o m
U &= B
,.nl.a o
£ |
U g O
= o= s
ol . 61 | s
[« SR s :
o pumm—] =
oVl
YV o s ;
e fE iz o )
i N (3 S
R =t
dgeT -
b 62 (OB ATt Ehlaron
&S miE
wn b oo v Ob
| » © O — ©
Y
m o O e k_ bt 8
o= SR AT Bl o 5
g S S
2 BB g
o JR e S p 00
o o2.Q B0
walt
° Rl

s



* Checkpoint size = O(2 * RAM), worst case
- Cannot allow QEMU to hog that much RAM
- Cannot register that much with RDMA anyway

* Solution:
- Splitup checkpoint into ‘slabs’ (~5MB each
- Grow and evict slabs as needed
- Register slabs as they are needed

\\ 1y




o
]
o
9p)
o0
o
o p]

gl ;
(«]
=
3 o
RORTS. "
et
= o
e Gl
s & e
(A B anl
—
= o) =T
o.“ n (9p) fn...
ES .= i
o o . e )
m G ) — 1@
& @ = an R i
= 3 g e =%
= Sl
MBS algn
= O 2 &5 ~ E
o R o =
w S ® B =
M > B
°



* Plan is to active QEMU ¢‘drive-mirror’
~ ‘drive-mirror’ would also need to be RDMA-capable
- Local I/0 blocks go to disk unfettered

0

* Mirrored blocks:
* Held until checkpoint complete,
- then released

“ This was chosen over shared storage
F IMance redasons

otr-implem en
F‘._ stc ora g e




Drive-mirror + MC

lEMU

Backup VM
virtio-frontend

Protected VM
virtio-frontend

4 or RDMA)
MC- |

Virtio-backend thread Virtio-b&ckend

MC Buffer
Control

Mirrored
writes

%rive-mirror Drive-mirror
(Direct }/Os) : (Buffered 1/0s)

writes | Linuk / KVM

Local Storage Local Storage









Workflow

Controller Node

* Challenges:
* REST command doeq not return after $>./cb vmprotect
. FT is initiated => perfnanent thread .
must get kicked o $ > nova migrate
Openstack has no foncept (yet) of
VM Lifecycle magagement or Failure
* Openstack would plso need

1
* storage-level compatibility with Messa;g— —evet

Service Compute

' our FT storage apgroach

* Who owns storage after failure?

' How recalculate cluster resources?
' How to keep mysql consistent?

Compute Node 1 Compute Node 2

Nova- Ao Nova-
Compute SRt S e compute

Libvirt

Mesgaging S [Messaging
Service Y : Servici
1 % Failure?

Protected Failover
QEMU QEMU




Sender

1-b) Insert 1/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

S 10 b) Recelve ACK

' "Barrler A

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of check_poiht




checkpoint

Sender
1-b) Insert 1/O barrier A

2) Stop virtual machine
3) Capture checkpoint
4) Insert 1/O Barrier B
5) Resume virtual machine

6) Transmit Checkpoint

10b)Rece|veACK e

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




I

1-b) Insert 1/O barrier A

Sender

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

10b)Rece|veACK e

VM running

VM not running

VM running

Receive

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




I

1-b) Insert 1/O barrier A

Sender

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

_ 10-b)ReceiveACK |

Receive

VM running

VM not running

VM running

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




checkpoint

Sender Receive

1-b) Insert 1/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert 1/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

11) Release 0
BarrierA

10b)Rece|veACK e

VM running

VM not running

VM running

1-a) ACK | Ready for next
checkpoint

7) Receive checkpoint

8) Transmit ACK of c.heck_poiht




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

