
RDMA Migration and
RDMA Fault Tolerance
for QEMU
 Michael R. Hines
 IBM

 mrhines@us.ibm.com

http://wiki.qemu.org/Features/RDMALiveMigration
http://wiki.qemu.org/Features/MicroCheckpointing

1

mailto:mrhines@us.ibm.com
http://wiki.qemu.org/Features/RDMALiveMigration
http://wiki.qemu.org/Features/MicroCheckpointing

Migration design / policy Problems

• Admins want to evacuate any size VMs
 Tens of GB / Hundreds of GB
 Arbitrary storage configurations
 Arbitrary processor configurations

• Management software is still pretty blind:
 Is VM idle?
 Busy?
 Full of zeros?
 Mission Critical?
 System software wants our cake
 and eat it too

2

High Availability design / policy
problems:

• Customers don’t (yet) want to re-architect
 Just make my “really big JVM” or my “honking DBMS” run
 Don’t ask me any questions about the workload
 But willing to tell you “high-level” workload characteristics
 Co-workers keep telling me security is important,
 probably don’t want any “extreme” visibility anyway

• Customers do *want* high availability
 But they don’t really trust us (much)

 They think we’re really good at running workloads
 Not so sure we’re good at *moving* workloads

 Also don’t want to re-architect
 Don’t want to put all their eggs in one basket

 Still very willing to spend money on mainframes

• “PaaS” not a panacea, but has the potential to be

3

State of the art
• Migration: 40 Gbps *ethernet* hardware already on the

market
 Faster ones not far away
 Can we do TCP @ 40 Gbps?

 Sure, at 100% CPU – that’s not good
• Fault Tolerance:

 A.K.A: Micro-Checkpointing / Continuous Replication
 Multiple hypervisors are introducing it:

 Remus on Xen
 VMWare lockstep
 Marathon / Stratus EverRun

 Where is KVM in all this “HA” activity?

4

Unsolved Needs

 Smaller active set of physical servers
 evacuate low utilization servers



 Higher utilization for active servers
 lower headroom requires rapid rebalance when

workload spikes


 A decrease in energy use –
 rapidly adjust servers online to load variation to

preserve SLA


 Customers buy/install servers for peak loads
 fast VM migration allows dynamic size to actual

5

35 IBM proprietary VMs sampled
every 5 minutes (WebSphere, DB2)
over 24 hours 6

RDMA Migration Challenges

• RDMA usage:
 Memory must be registered on both sides
 Small RDMA transfers are kind of useless

 IB programming is like IPv6:
 Necessary evil, but proven technology
 RDMA over Ethernet products from multiple Vendors

• QEMU:
 Avoid changing the QEMUFile abstraction – many users
 Avoid re-architecting savevm.c/arch_init.c
 Avoid “mixing” TCP and RDMA protocol code –

 They are really mutually exclusive programming paradigms
 One gives you a bytestream and one does not

7

Results 8

RDMA Fault Tolerance
Status

• Slow going, but steady

9

Protected
DB Server VM

Protected
App Server VM

Failover
DB Server VM

Failover
App Server VM

 Checkpointed TCP/IP traffic

Asynchronous
Micro-checkpointing
+ I/O buffering
+ RDMA

Node 1 Node 2

1

2

3

4

Challenge Status

#1 Memory /
CPU

Done, ~10-
20%
penalty

#2 Network
Buffering

Done,
~50%
penalty

#3 Storage
Buffering

In Progress

#4 RDMA
Acceleration
for I/O and
Memory

In Plan

#5 Application
Awareness

Not yet in
plan

5

RDMA Fault Tolerance Challenges

• Sub-millisecond-FT requires consistent I/O
 Outbound network must be buffered
 Outbound storage must be mirrored


• Expensive Identification of dirty memory
 Multiple KVM log_dirty calls => QEMU bitmap
 Multiple QEMU bitmaps => QEMU bytemap

 Bytemap used by VGA? PCI? Others?
 Bytemap => single bitmap
 Stream through bitmap


• 60 milliseconds to identify dirty memory on a 16GB
vm! Ahhhhh!

10

--

 Linux / KVM

 QEMU

Network Barriers – how it works with Micro-
Checkpointing (MC) ?

IBM Confidential

11

Protected VM

virtio-frontend

Vhost-backend
(optional) Tap-device

Qdisc buffering

MC-
thread

Virtio-backend

Checkpoints (TCP or RDMA)

TX/RX

Software Bridge

MC
Buffer
Control
Signals

Outbound Traffic

Vhost
Linux
Bypass

IFB device

Micro-Checkpointing “barometer”: where do the costs come from?
Average checkpoint size < 5MB

12

Skip bytemap projected:

Idle VM (Parallel)

Normal bytemap prep

0 5 10 15 20 25

Transmit (VM Running)

Local Copy to Staging (VM Stopped)

Prepare Bytemap => Bitmap (VM Stopped)

GET_LOG_DIRTY + bytemap (VM stopped)

Support for Over-
commitment

• Very “sensitive” topic =)
 Myth: Sub-second, sub-working-set over-commitment
 Reality: Sub-day, sub-hour, working set
 growth and contraction

• RDMA Migration:
 Overcommit on both sides of connection?
 Again: Does your management software know anything?

 Lots of zero pages? VM is idle? Critical?
 Why can’t our management software have APIs that libvirt can share?

Or maybe OpenStack can share?
 Does policy engine know when to use RDMA?

• RDMA Fault Tolerance:
 checkpoints arbitrary in size – double the VM in the worst case
 Checkpoints also need to be compatible w/ RDMA

13

When *should* you use
RDMA?

You (or your policy management) is dealing with a
known memory bound workload that doesn’t converge
with TCP
• Migration Time = O(dirty rate)

 Where Dirty rate > TCP bandwidth
• You have sufficient available free memory on the

destination host
• Your source host cannot tolerate stealing CPU cycles from

VMs for TCP traffic

14

When *not* to use RDMA
Migration?

1.Is your VM idle?
 Migration Time = O(bulk transfer)
 Is your VM “young”? (Full of zeros?)

2. - Migration Time = O(almost nothing)
3.Your known-memory-bound application doesn’t converge AT

ALL
 Migration Time = O(infinity)
 It is so heavy, you need “auto-converge” capability (new in 1.6)

15

When should
you use FT?

1.You have no idea what the workload is
 But “someone” told you (i.e. paid) that it was important

2.Or you know what the workload is, but its memory
content is mission-critical

3.I/O slow down is not a “big deal”
4.You must have high-availability
5.without re-architecting your workload

16

When you should *not* use FT?

1.Your workload can already survive restart
2.Your crashes are caused by *guest* bugs not host bugs or

hardware failures
3.Your workload is stateless
4.Your workload cannot tolerate poor I/O
5.You’re customer is willing to tightly integrate with the

“family” of HA tools:
HACMP / Pacemaker / LinuxHA / Corosync /

Zookeeper ….. The list goes on

17

(merged, 1) Technical Summary
of QEMU Changes for RDMA

• RDMA knows what a “RAMBlock” is
• New QEMUFileOps pointers:

 save_page()
Allows for source ‘override’ of the transmission of a page

 before_ram_iterate()
Allows for source to perform additional initialization steps *before*
each migration iteration

 after_ram_iterate()
Similar source override, but at the end of each iteration

 hook_ram_load()
Allows the destination override the *receipt* of memory during each
iteration

18

(merged, 2) Technical Summary
of QEMU Changes for RDMA

• QEMUFile operations:
 Translate into IB Send/Recv messages

• qemu_savevm_state_(begin|iterate|complete)()
 Invoke previous hooks (before_ram/after_ram)
 Hooks instruct destination to handle memory

registration on-demand
• ram_save_block()

 Invokes save_page()
 If RDMA not compiled or enabled, then we fallback to

TCP

19

(Implemented) FT
Technical
Summary (2)

• Checkpoint size = O(2 * RAM), worst case
 Cannot allow QEMU to hog that much RAM
 Cannot register that much with RDMA anyway


• Solution:
 Splitup checkpoint into ‘slabs’ (~5MB each)
 Grow and evict slabs as needed
 Register slabs as they are needed

20

(Implemented) FT
Technical
Summary (2)

• Network ‘output commit’ problem:
 Xen community has released their network buffering solution

into netlink community:
 Output Packets leave VM
 End up in tap device
 Tap device dumps packets into IFB device
 Turns ‘inbound’ packets into ‘outbound’ packets
 Qdisc ‘plug’ inserted into IFB device
 Checkpoints are coordinated with ‘plug’ and ‘unplug’ operations

21

Not implemented:
FT storage
mirroring

• Plan is to active QEMU ‘drive-mirror’
 ‘drive-mirror’ would also need to be RDMA-capable
 Local I/O blocks go to disk unfettered


• Mirrored blocks:
• Held until checkpoint complete,

 then released
 This was chosen over shared storage

 For performance reasons
 And ordering constraints

22

Drive-mirror + MC

23

Linux / KVM

 QEMU

23

Protected VM
virtio-frontend

MC-
threadVirtio-backend

Checkpoint
s
(TCP
 or RDMA)

Disk
writes

MC Buffer
Control
Signals

Local Storage

Linux / KVM

 QEMU

Backup VM
virtio-frontend

Local Storage

Virtio-backend

Drive-mirror
(Direct I/Os)

Drive-mirror
(Buffered I/Os)

Mirrored
writes

Thanks! 24

Backup Slides 25

OpenStack Cloud: Possible Management
Workflow

• Challenges:
• REST command does not return after
• FT is initiated => permanent thread

 must get kicked off
 Openstack has no concept (yet) of
 VM Lifecycle management or Failure
 Openstack would also need
 storage-level compatibility with
 our FT storage approach
 Who owns storage after failure?
 How recalculate cluster resources?
 How to keep mysql consistent?

Protected
QEMU

Nova-
Compute

Nova-
compute

Failover
QEMU

Compute Node 1 Compute Node 2

Controller Node

Libvirt

Libvirt

Nova-
Compute Mysql

Messaging
Service

Messaging
Service

Messaging
Service

Failure?

$ > ./cb vmprotect
$ > nova migrate 1

2

Sequence of Events:

27

TimeTime

Sender Receive
r 1-a) ACK / Ready for next

checkpoint

 7) Receive checkpoint

 8) Transmit ACK of checkpoint

9-a) Apply checkpoint

10-b) Receive ACK

 11) Release I/O
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6

8

Failure modes: I/O
Barrier A lost, revert
checkpoint

28

TimeTime

Sender Receive
r 1-a) ACK / Ready for next

checkpoint

 7) Receive checkpoint

 8) Transmit ACK of checkpoint

9-a) Apply checkpoint

10-b) Receive ACK

 11) Release I/O
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6

8

Failure modes: I/O
Barriers A & B lost,
revert checkpoint

29

TimeTime

Sender Receive
r 1-a) ACK / Ready for next

checkpoint

 7) Receive checkpoint

 8) Transmit ACK of checkpoint

9-a) Apply checkpoint

10-b) Receive ACK

 11) Release I/O
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6

8

Failure modes: I/O
Barriers A & B lost,
revert checkpoint

30

TimeTime

Sender Receive
r 1-a) ACK / Ready for next

checkpoint

 7) Receive checkpoint

 8) Transmit ACK of checkpoint

9-a) Apply checkpoint

10-b) Receive ACK

 11) Release I/O
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6

8

Failure modes: I/O
barrier B lost, revert
checkpoint

31

TimeTime

Sender Receive
r 1-a) ACK / Ready for next

checkpoint

 7) Receive checkpoint

 8) Transmit ACK of checkpoint

9-a) Apply checkpoint

10-b) Receive ACK

 11) Release I/O
Barrier A

I/O Barrier B will
release on
 next checkpoint

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6

8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

