
RDMA Migration and
RDMA Fault Tolerance
for QEMU
                        Michael R. Hines
                                   IBM

          mrhines@us.ibm.com

http://wiki.qemu.org/Features/RDMALiveMigration
http://wiki.qemu.org/Features/MicroCheckpointing

1

mailto:mrhines@us.ibm.com
http://wiki.qemu.org/Features/RDMALiveMigration
http://wiki.qemu.org/Features/MicroCheckpointing


Migration design / policy Problems

• Admins want to evacuate any size VMs
 Tens of GB / Hundreds of GB
 Arbitrary storage configurations
 Arbitrary processor configurations

• Management software is still pretty blind:
 Is VM idle? 
 Busy? 
 Full of zeros? 
 Mission Critical?
 System software wants our cake
  and eat it too
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High Availability design / policy 
problems:

• Customers don’t (yet) want to re-architect
 Just make my “really big JVM” or my “honking DBMS” run
 Don’t ask me any questions about the workload
 But willing to tell you “high-level” workload characteristics
 Co-workers keep telling me security is important, 
 probably don’t want any “extreme” visibility anyway

• Customers do *want* high availability
 But they don’t really trust us (much)

 They think we’re really good at running workloads
 Not so sure we’re good at *moving* workloads

 Also don’t want to re-architect
 Don’t want to put all their eggs in one basket

 Still very willing to spend money on mainframes

• “PaaS” not a panacea, but has the potential to be
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State of the art
• Migration: 40 Gbps *ethernet* hardware already on the 

market
 Faster ones not far away
 Can we do TCP @ 40 Gbps? 

 Sure, at 100% CPU – that’s not good
• Fault Tolerance: 

 A.K.A: Micro-Checkpointing / Continuous Replication
 Multiple hypervisors are introducing it:

 Remus on Xen
 VMWare lockstep
 Marathon / Stratus EverRun

 Where is KVM in all this “HA” activity?
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Unsolved Needs

 Smaller active set of physical servers 
 evacuate low utilization servers



 Higher utilization for active servers
 lower headroom requires rapid rebalance when 

workload spikes


 A decrease in energy use – 
 rapidly adjust servers online to load variation to 

preserve SLA


 Customers buy/install servers for peak loads
 fast VM migration allows dynamic size to actual
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35 IBM proprietary VMs sampled 
every 5 minutes (WebSphere, DB2) 
over 24 hours 6



RDMA Migration Challenges

• RDMA usage:
 Memory must be registered on both sides
 Small RDMA transfers are kind of useless

 IB programming is like IPv6:
 Necessary evil, but proven technology
 RDMA over Ethernet products from multiple Vendors

• QEMU:
 Avoid changing the QEMUFile abstraction – many users
 Avoid re-architecting savevm.c/arch_init.c
 Avoid “mixing” TCP and RDMA protocol code –

 They are really mutually exclusive programming paradigms
 One gives you a bytestream and one does not
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RDMA Fault Tolerance 
Status

• Slow going, but steady
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Challenge Status

#1 Memory / 
CPU

Done, ~10-
20% 
penalty

#2 Network 
Buffering

Done, 
~50%
penalty

#3 Storage 
Buffering

In Progress

#4 RDMA 
Acceleration 
for I/O and 
Memory

In Plan

#5 Application 
Awareness

Not yet in 
plan
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RDMA Fault Tolerance Challenges

• Sub-millisecond-FT requires consistent I/O 
 Outbound network must be buffered
 Outbound storage must be mirrored


• Expensive Identification of dirty memory
 Multiple KVM log_dirty calls => QEMU bitmap
 Multiple QEMU bitmaps => QEMU bytemap

 Bytemap used by VGA? PCI? Others?
 Bytemap => single bitmap
 Stream through bitmap


• 60 milliseconds to identify dirty memory on a 16GB 
vm!  Ahhhhh!
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----------------------------------------       
                                                      
    
               Linux / KVM

                              QEMU

                     

Network Barriers – how it works with Micro-
Checkpointing (MC) ?

IBM Confidential
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Micro-Checkpointing “barometer”: where do the costs come from?
Average checkpoint size < 5MB
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Support for Over-
commitment

• Very “sensitive” topic =)
 Myth: Sub-second, sub-working-set over-commitment
 Reality: Sub-day, sub-hour, working set 
 growth and contraction

• RDMA Migration: 
 Overcommit on both sides of connection?
 Again: Does your management software know anything?

 Lots of zero pages? VM is idle? Critical?
 Why can’t our management software have APIs that libvirt can share? 

Or maybe OpenStack can share?
 Does policy engine know when to use RDMA?

• RDMA Fault Tolerance: 
 checkpoints arbitrary in size – double the VM in the worst case
 Checkpoints also need to be compatible w/ RDMA
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When *should* you use 
RDMA?

You (or your policy management) is dealing with a 
*known* memory bound workload that doesn’t converge 
with TCP
• Migration Time = O(dirty rate)

 Where Dirty rate > TCP bandwidth
• You have sufficient available free memory on the 

destination host
• Your source host cannot tolerate stealing CPU cycles from 

VMs for TCP traffic
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When *not* to use RDMA 
Migration?

1.Is your VM idle? 
 Migration Time = O(bulk transfer)
 Is your VM “young”? (Full of zeros?)

2. - Migration Time = O(almost nothing)
3.Your known-memory-bound application doesn’t converge AT 

ALL
 Migration Time = O(infinity)
 It is so heavy, you need “auto-converge” capability (new in 1.6)
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When should 
you use FT?

1.You have no idea what the workload is
 But “someone” told you (i.e. paid) that it was important

2.Or you know what the workload is, but its memory 
content is mission-critical

3.I/O slow down is not a “big deal”
4.You must have high-availability 
5.without re-architecting your workload
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When you should *not* use FT?

1.Your workload can already survive restart
2.Your crashes are caused by *guest* bugs  not host bugs or 

hardware failures
3.Your workload is stateless
4.Your workload cannot tolerate poor I/O
5.You’re customer is willing to tightly integrate with the 

“family” of HA tools: 
HACMP / Pacemaker / LinuxHA / Corosync / 

Zookeeper ….. The list goes on
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(merged, 1) Technical Summary 
of QEMU Changes for RDMA

• RDMA knows what a “RAMBlock” is
• New QEMUFileOps pointers:

  save_page()
Allows for source ‘override’ of the transmission of a page

  before_ram_iterate()
Allows for source to perform additional initialization steps *before* 
each migration iteration

  after_ram_iterate()
Similar source override, but at the end of each iteration

  hook_ram_load()
Allows the destination override the *receipt* of memory during each 
iteration
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(merged, 2) Technical Summary 
of QEMU Changes for RDMA

• QEMUFile operations:
 Translate into IB Send/Recv messages

• qemu_savevm_state_(begin|iterate|complete)()
 Invoke previous hooks (before_ram/after_ram)
 Hooks instruct destination to handle memory 

registration on-demand
• ram_save_block()

 Invokes save_page()
 If RDMA not compiled or enabled, then we fallback to 

TCP
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(Implemented) FT 
Technical 
Summary (2)

• Checkpoint size = O(2 * RAM), worst case
 Cannot allow QEMU to hog that much RAM
 Cannot register that much with RDMA anyway


• Solution:
 Splitup checkpoint into ‘slabs’ (~5MB each)
 Grow and evict slabs as needed
 Register slabs as they are needed
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(Implemented) FT 
Technical 
Summary (2)

• Network ‘output commit’ problem:
 Xen community has released their network buffering solution 

into netlink community:
 Output Packets leave VM
 End up in tap device
 Tap device dumps packets into IFB device
 Turns ‘inbound’ packets into ‘outbound’ packets
 Qdisc ‘plug’ inserted into IFB device
 Checkpoints are coordinated with ‘plug’ and ‘unplug’ operations
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Not implemented: 
FT storage 
mirroring

• Plan is to active QEMU ‘drive-mirror’
 ‘drive-mirror’ would also need to be RDMA-capable
 Local I/O blocks go to disk unfettered


• Mirrored blocks:
• Held until checkpoint complete, 

 then released
 This was chosen over shared storage

 For performance reasons
 And ordering constraints
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Drive-mirror + MC
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Linux / KVM

                          QEMU
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Protected VM
virtio-frontend

MC-
threadVirtio-backend

Checkpoint
s 
(TCP
 or RDMA)

Disk 
writes

MC Buffer 
Control 
Signals

Local Storage

Linux / KVM

                                          
     QEMU  
--------------------

                     

Backup VM
virtio-frontend

Local Storage

Virtio-backend

Drive-mirror 
(Direct I/Os)

Drive-mirror
(Buffered I/Os)

Mirrored
writes
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OpenStack Cloud: Possible Management 
Workflow

• Challenges:
• REST command does not return after
• FT is initiated => permanent thread

 must get kicked off
 Openstack has no concept (yet) of 
 VM Lifecycle management or Failure
 Openstack would also need 
 storage-level compatibility with
 our FT storage approach
 Who owns storage after failure?
 How recalculate cluster resources?
 How to keep mysql consistent?

Protected
QEMU

Nova-
Compute

Nova-
compute

Failover
QEMU

Compute Node 1      Compute Node 2

Controller Node 

Libvirt

Libvirt

Nova-
Compute Mysql

Messaging
Service

Messaging
Service

Messaging
Service

Failure?

$ > ./cb vmprotect
$ > nova migrate 1
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Sequence of Events: 
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TimeTime

Sender Receive
r   1-a) ACK / Ready for next 

checkpoint

  7) Receive checkpoint

   8) Transmit ACK of checkpoint

9-a)  Apply checkpoint

10-b) Receive ACK

    11) Release I/O 
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1
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Failure modes: I/O 
Barrier A lost, revert 
checkpoint
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TimeTime

Sender Receive
r   1-a) ACK / Ready for next 

checkpoint

  7) Receive checkpoint

   8) Transmit ACK of checkpoint

9-a)  Apply checkpoint

10-b) Receive ACK

    11) Release I/O 
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6
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Failure modes: I/O 
Barriers A & B lost, 
revert checkpoint
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TimeTime

Sender Receive
r   1-a) ACK / Ready for next 

checkpoint

  7) Receive checkpoint

   8) Transmit ACK of checkpoint

9-a)  Apply checkpoint

10-b) Receive ACK

    11) Release I/O 
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6
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Failure modes: I/O 
Barriers A & B lost, 
revert checkpoint 
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TimeTime

Sender Receive
r   1-a) ACK / Ready for next 

checkpoint

  7) Receive checkpoint

   8) Transmit ACK of checkpoint

9-a)  Apply checkpoint

10-b) Receive ACK

    11) Release I/O 
Barrier A

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1
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Failure modes: I/O 
barrier B lost, revert 
checkpoint
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TimeTime

Sender Receive
r   1-a) ACK / Ready for next 

checkpoint

  7) Receive checkpoint

   8) Transmit ACK of checkpoint

9-a)  Apply checkpoint

10-b) Receive ACK

    11) Release I/O 
Barrier A
   
I/O Barrier B will 
release on
 next checkpoint

1-b) Insert I/O barrier A

2) Stop virtual machine

3) Capture checkpoint

4) Insert I/O Barrier B

5) Resume virtual machine

6) Transmit Checkpoint

VM not running

VM running

VM running 1

6
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