Status Update About COLO
(Colo: COarse-grain LOck-stepping Virtual Machines for Non-stop Service)

eddie.dong@intel.com
arei.gonglei@huawei.com
yanghy@cn.fujitsu.com
Agenda

• Background
• Introduction Of COLO
• Current Status
• Performance
• Summary
What is COLO?

COLO(COarse-grain LOck-stepping) is an ideal Application-agnostic Solution for **Non-stop service in the cloud**.

- Typical Non-stop Service Requires
 - Expensive hardware for redundancy
 - Extensive software customization
- **COLO**
 Cheap Application-agnostic Non-stop Virtual Machine
What Happened?

- Academia paper published at ACM Symposium on Cloud Computing (SOCC’13) (originated by Intel)
- Collaboration between Huawei and Intel, announced in FusionSphere 3.0
- Introduced COLO in KVM forum 2013, and got active response from the community

Goal: make COLO upstream into KVM/XEN

- Collaboration between Huawei, Intel and Fujitsu, focus on open source development in KVM community
- Introduced COLO into KVM/XEN, proposal already accepted, and active response
Agenda

• Background
• Introduction Of COLO
• Current Status
• Performance
• Summary
Non-stop Service Solutions

• Hardware Solution
 – Robust Hardware Components
 • Very expensive
 – Still Unpredictable
 • such as alpha-particles in cosmic

• Software Solution
 – Replication
 • Construct backup replicas at run time
 – Failover: backups take over when the primary fails
Different Layer of Replication

• Application layer
 – Extensive software customization
 – Impractical to legacy software

• OS layer
 – Large complexity, not commoditized

• Virtual machine layer
 – Application and OS agnostic
VM Replication

Diagram showing the layers of hardware, VMM, OS, PVM, and APPs in both primary and secondary systems. The diagram includes arrows indicating VM replication and fail over between the primary and secondary systems. A note indicating 'Hardware Failure' is present.
Existing VM Replication Approaches

• Lock-stepping: Replicating per instruction
 – Execute in parallel for deterministic instructions
 – Lock and step for nondeterministic instructions

• Checkpoint: Replicating per epoch
 – Output is buffered within an epoch
 • Exact machine state matching from external observers

Replicating Exact Machine State from PVM to SVM
Problems

• Lock-stepping
 – Excessive replication overhead for MP-guest
 • memory access in an MP-guest is nondeterministic

• Periodic Checkpoint
 – Extra network latency
 – Excessive VM checkpoint overhead
Why Exact Machine State Matching?

- Valid / Invalid replica (SVM)
 - Be able / unable to take over the service respecting the application semantics
- Exact machine state matching is an overly strong condition

![Diagram showing valid and invalid replica with machine state divergence and hard boundary.](image)
COarse-grain LOck-stepping (COLO)

- Replicating with less machine state matching
 - Executes in parallel, as if the machine state is within the hard boundary
 - Non-stop service system ↔ machine state contrail fully within the hard boundary
Challenge – 1

- How to guarantee the machine state contrail is fully within the hard boundary
 - The initial SVM state may be identical to the PVM
 - May enforce machine state matching any time
Challenge - 2

• How to identify the boundary?
 – Impractical to find the exact boundary of
 – Any boundary within the hard boundary works

Can We Find a Practical Workable Boundary?
An Example Solution

• A practical solution to COLO
 – Identify the workable boundary () base on the output response
 • The initial SVM state is identical to PVM
 – SVM is a valid replica if and only if it can generate identical responses with PVM
 • SVM and PVM are feed with same inputs
 • Checkpoint if the SVM is no longer a valid replica

Further Explorations Are Required to Identify More Workable Boundary
Why It Works

• Response Model for C/S System
 \[R_n = g_n(r_0, r_1, r_2, \ldots, r_n, u_0, \ldots, u_m) \]
 – \(r_i \) & \(u_i \) are the request and the execution result of an nondeterministic instruction
 – Each response packet from the equation is a semantics response

• Successfully failover at \(k^{th} \) packet if
 \[C = \{R_1^P, \ldots, R_k^P, R_{k+1}^e, \ldots\} \quad \forall i \leq k, R_i^e = R_i^P \]
 (\(C \) is the packet series the client received)
Why Better

• Comparing with Periodic VM checkpoint
 – No buffering-introduced latency
 – Less checkpoint frequency
 • On demand vs. periodic

• Comparing with lock-stepping
 – Eliminate excessive overhead of nondeterministic instruction execution due to MP-guest memory access
Architecture of COLO

COarse-grain LOck-stepping Virtual Machine for Non-stop Service
Implementations

• Targeting fail-stop failure
 – Most hardware failures are self-corrected in modern server
 – Unrecoverable failures are fail-stop failures

• Base on Xen VM Checkpointing Solution (Remus)
 – Extend Remus passive-checkpointing to support active-checkpointing
Performance Consideration

• The frequency of Checkpoint is critical
 – Highly dependent on the *Output Similarity*, or *Response Similarity*
 • Key Focus is TCP packet!

 – Might be even worse if there are too frequent VM checkpoint

• Response similarity determines the frequency of checkpoint
Improving Response Similarity

• Minor Modification to Guest TCP/IP Stack
 – Coarse-grained time stamps
 – Per-Connection comparison
 – Highly-deterministic ACK mechanism
 – Deterministic segmentation with Nagle algorithm
 – Coarse-grained notification Window Size
Failover Mode

COLO manager thread in Primary Node

A

... From PVM

Get packet R^P_k

Get packet R^S_k

B

Is SVM a Valid Replica?

Y

N

Active Checkpoint

C

D

Releasing packet k

COLO manager in Secondary Node

Forwarding R^S_k

From SVM
Device State Lock-Stepping

• Local Storage
 – View as external interaction
 • Consider the write operations as responses to external observer → lead to increased checkpointing frequency
 – View as internal interaction
 • Write operation result is part of internal machine state
 – may not lead to immediate VM checkpointing
 – Need to forward and compare storage write operations

• Remote Storage
 – Shared access: Rely on the remote storage system
 – Exclusive access: Same policy with local storage
Agenda

• Background
• Introduction Of COLO
• Current Status
• Performance
• Summary
Current Status

• Academia paper published at ACM Symposium on Cloud Computing (SOCC’13)
 – “COLO: COarse-grained LOck-stepping Virtual Machines for Non-stop Service”
 • http://www.socc2013.org/home/program
 – Refer to the paper for technical details

• Industry announcement
 – Huawei FusionSphere uses COLO

• Wiki pages
 – COLO on Xen:
 • http://wiki.xen.org/wiki/COLO_-_Coarse_Grain_Lock_Stepping
 – COLO on Qemu/KVM:
 • http://wiki.qemu.org/Features/COLO
Upstream Status

• COLO-Frame: patch series v8 has been posted on QEMU mailist.
 – [PATCH COLO-Frame v8 00/34] COarse-grain LOck-stepping(COLO) Virtual Machines for Non-stop Service (FT)

• Block replication: patch series v8 has been posted on QEMU mailist.
 – [PATCH COLO-BLOCK v8 00/18] Block replication for continuous checkpoints

• COLO-proxy in QEMU: poc been posted on QEMU mailist.
 – [PATCH v8 --for 4.6 COLO 00/25] COarse-grain LOck-stepping Virtual Machines for Non-stop Service

• Patches for Xen are sent to the mailinglist (v8)
 – [PATCH v8 --for 4.6 COLO 00/25] COarse-grain LOck-stepping Virtual Machines for Non-stop Service
Agenda

• Background
• Introduction Of COLO
• Current Status
• Performance
• Summary
Configurations & Benchmarking

- **Hardware**
 - 2.7 GHz 8-core Xeon processor, 128 GB Ram
 - 1 Gbps external conn, 10 Gbps internal conn

- **Software**
 - Guest: RHEL5U5 with 2 GB memory, PV disk/NIC
 - Dom0: RHEL6U1 (kernel updated to 3.2)
 - Hypervisor: Xen 4.1, 10 MB log buffer for disk write operations

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Impact of TCP/IP Modification

- Concurrent TCP connections in COLO native TCP/IP stack in WAN
 - Total BW: 80 Mbps, stddev: 4.4

- Concurrent TCP connections in COLO modified TCP/IP stack in WAN
 - Total BW: 80 Mbps, stddev: 3.1

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
Web Server Performance - Web Bench

For more complete information about performance and benchmark results, visit [www.intel.com/benchmarks]

Source: Intel
Web Server Performance - Web Bench (MP)

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
PostgreSQL Performance - Pgbench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
Agenda

• Background
• Introduction Of COLO
• Current Status
• Performance
• Summary
Summary

• COLO can achieve native performance for CPU-intensive workload

• COLO is MP-neutral, and outperforms Remus by 69% in Web Bench, and 46% in Pgbench, respectively

• Next steps
 – Fix based on reviewing comments
 – Optimize performance
 – Anything else?
Backups
Machine State Evolvement in COLO

- **Valid Replica**
- **Invalid Replica**
- **Machine State Divergence**
- **Matching Enforcement**
- **Boundary**
- **Machine State Evolvement w/o matching enforcement**
- **Machine State Evolvement in COLO**
Sysbench & Kernel Build

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
Kernel Build vs. Log Buffer Size

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
Output Similarity of Web Server – Web Bench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
Output Similarity of PostgreSQL - Pgbench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
VM Checkpoint Cost – Web Bench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
VM Checkpoint Cost – Pgbench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Source: Intel
Limitations

Performance Degradation from nonblock Sending in Web Bench

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks